
22/02/2023, 15:37String Templates (Preview)

Page 1 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

This specification is not final and is subject to change. Use is subject to license terms.

String Templates (Preview)
Changes to the Java® Language Specification • Version 20-internal-
adhoc.gbierman.20230222

Chapter 2: Grammars
2.1 Context-Free Grammars
2.2 The Lexical Grammar
2.3 The Syntactic Grammar

Chapter 3: Lexical Structure
3.1 Unicode
3.5 Input Elements and Tokens
3.13 Fragments

Chapter 7: Packages and Modules
7.3 Compilation Units
7.5 Import Declarations

7.5.3 Single-Static-Import Declarations
7.5.4 Static-Import-on-Demand Declarations

Chapter 12: Execution
12.5 Creation of New Class Instances

Chapter 15: Expressions
15.8 Primary Expressions

15.8.1 Lexical Literals
15.8.6 Template Expressions

This document describes changes to the Java Language Specification ⇗ to support String
Templates, a preview feature of Java SE 21. See JEP 430 ⇗ for an overview of the feature.

Changes are described with respect to existing sections of the JLS. New text is indicated like this
and deleted text is indicated like this. Explanation and discussion, as needed, is set aside in grey
boxes.

Changelog:

2022-02-22: Small changes following feedback.

2022-02-09: Third draft. In addition to various editorial changes, the other significant
changes include:

Tokenization of templates fully specified in 3.13 (including new ambiguities
introduced and how they are resolved)
Improved treatment of text block templates.
More examples included throughout.

2022-11-15: Second draft. Main changes surround details of lexical and syntactical
grammars. New terminology introduced for templates.

2022-01-20: First draft released.

https://www.oracle.com/java/javase/terms/license/java20speclicense.html
https://docs.oracle.com/javase/specs/jls/se19/html
https://openjdk.org/jeps/430

22/02/2023, 15:37String Templates (Preview)

Page 2 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

Chapter 2: Grammars

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract
symbol called a nonterminal as its left-hand side, and a sequence of one or more nonterminal and
terminal symbols as its right-hand side. For each grammar, the terminal symbols are drawn from
a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol,
a given context-free grammar specifies a language, namely, the set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with
a right-hand side of a production for which the nonterminal is the left-hand side.

Some grammars are ambiguous, in that starting with the goal symbol, there may be a number of
distinct ways of applying the productions to end up with the same sequence of terminal symbols.
Resolving ambiguities involves either preferring one particular way of applying productions over
all the alternatives, or taking other contextual information into account.

2.2 The Lexical Grammar

A lexical grammar for the Java programming language is given in 3 ⇗. This grammar has as its
terminal symbols the characters of the Unicode character set. It defines a set of productions,
starting from the goal symbol Input (3.5), that describe how sequences of Unicode characters
(3.1) are translated into a sequence of input elements (3.2 ⇗).

These input elements, with white space (3.6 ⇗) and comments (3.7 ⇗) discarded, form the
terminal symbols for the syntactic grammar for the Java programming language and are called
tokens (3.5). These tokens are include the identifiers (3.8 ⇗), keywords (3.9 ⇗), literals (3.10 ⇗),
separators (3.11 ⇗), and operators (3.12 ⇗) of the Java programming language.

The lexical grammar is ambiguous, and a number of rules determine how these ambiguities are
resolved (3.5).

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters 4, 6-10, 14, and
15. This grammar has as its terminal symbols the tokens defined by the lexical grammar. It
defines a set of productions, starting from the goal symbol CompilationUnit (7.3), that describe
how sequences of tokens can form syntactically correct programs.

In a small number of places the particular production of the syntactic grammar being followed
provides context to resolve ambiguities in the lexical grammar (3.5).

For convenience, the syntactic grammar is presented all together in Chapter 19.

The rest of Chapter 2 is unchanged.

Chapter 3: Lexical Structure
This chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (3.1), but lexical translations are provided (3.2 ⇗) so that
Unicode escapes (3.3 ⇗) can be used to include any Unicode character using only ASCII
characters. Line terminators are defined (3.4 ⇗) to support the different conventions of existing

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.2
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.8
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.9
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.11
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.12
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.2
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.4

22/02/2023, 15:37String Templates (Preview)

Page 3 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical translations are reduced to a sequence of input
elements (3.5), which are white space (3.6 ⇗), comments (3.7 ⇗), and tokens. The tokens are the
identifiers (3.8 ⇗), keywords (3.9 ⇗), literals (3.10 ⇗), separators (3.11 ⇗), and operators (3.12 ⇗),
and fragments (3.13) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set (1.7 ⇗). Information about this character set
and its associated character encodings may be found at <https://www.unicode.org/> ⇗.

The Java SE Platform tracks the Unicode Standard as it evolves. The precise version of Unicode
used by a given release is specified in the documentation of the class Character.

The Unicode standard was originally designed as a fixed-width 16-bit character encoding. It has
since been changed to allow for characters whose representation requires more than 16 bits. The
range of legal code points is now U+0000 to U+10FFFF, using the hexadecimal U+n notation.
Characters whose code points are greater than U+FFFF are called supplementary characters. To
represent the complete range of characters using only 16-bit units, the Unicode standard defines
an encoding called UTF-16. In this encoding, supplementary characters are represented as pairs
of 16-bit code units, the first from the high-surrogates range (U+D800 to U+DBFF), and the
second from the low-surrogates range (U+DC00 to U+DFFF). For characters in the range U+0000
to U+FFFF, the values of code points and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units, using the
UTF-16 encoding.

Some APIs of the Java SE Platform, primarily in the Character class, use 32-bit integers to represent
code points as individual entities. The Java SE Platform provides methods to convert between 16-bit
and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the representation is
relevant, and the generic term character where the representation is irrelevant to the discussion.

Except for comments (3.7 ⇗), identifiers (3.8 ⇗), and the contents of character literals, string
literals, and text blocks, and templates (3.10.4 ⇗, 3.10.5 ⇗, 3.10.6 ⇗, 3.13), all input elements
(3.5) in a program are formed only from ASCII characters (or Unicode escapes (3.3 ⇗) which
result in ASCII characters).

ASCII (ANSI X3.4) is the American Standard Code for Information Interchange. The first 128
characters of the Unicode UTF-16 encoding are the ASCII characters.

3.5 Input Elements and Tokens

The input characters and line terminators that result from Unicode escape processing (3.3 ⇗) and
then input line recognition (3.4 ⇗) are reduced to a sequence of input elements.

Input:
{InputElement} [Sub]

InputElement:
WhiteSpace
Comment
Token

Token:

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.8
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.9
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.11
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.12
https://docs.oracle.com/javase/specs/jls/se19/html/jls-1.html#jls-1.7
https://www.unicode.org/
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.8
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.4
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.4

22/02/2023, 15:37String Templates (Preview)

Page 4 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

Identifier
Keyword
Literal
Separator
Operator
Fragment

Sub:
the ASCII SUB character, also known as "control-Z"

Those input elements that are not white space or comments are tokens. The tokens are the
terminal symbols of the syntactic grammar (2.3).

White space (3.6 ⇗) and comments (3.7 ⇗) can serve to separate tokens that, if adjacent, might
be tokenized in another manner.

For example, the input characters - and = can form the operator token -= (3.12 ⇗) only if there is no
intervening white space or comment. As another example, the ten input characters staticvoid form a
single identifier token while the eleven input characters static void (with an ASCII SP character
between c and v) form a pair of keyword tokens, static and void, separated by white space.

As a special concession for compatibility with certain operating systems, the ASCII SUB character
(\u001a, or control-Z) is ignored if it is the last character in the escaped input stream.

The Input production is ambiguous, meaning that for some sequences of input characters, there
is more than one way to reduce the input characters to input elements (that is, to tokenize the
input characters). Ambiguities are resolved as follows:

A sequence of input characters that could be reduced to either an identifier token or a
literal token is always reduced to a literal token.

A sequence of input characters that could be reduced to either an identifier token or a
reserved keyword token (3.9 ⇗) is always reduced to a reserved keyword token.

A sequence of input characters that could be reduced to either a contextual keyword token
or to other (non-keyword) tokens is reduced according to context, as specified in 3.9 ⇗.

If the input character > appears in a type context (4.11 ⇗), that is, as part of a Type or an
UnannType in the syntactic grammar (4.1 ⇗, 8.3 ⇗), it is always reduced to the numerical
comparison operator >, even when it could be combined with an adjacent > character to
form a different operator.

Without this rule for > characters, two consecutive > brackets in a type such as
List<List<String>> would be tokenized as the signed right shift operator >>, while three
consecutive > brackets in a type such as List<List<List<String>>> would be tokenized as the
unsigned right shift operator >>>. Worse, the tokenization of four or more consecutive >
brackets in a type such as List<List<List<List<String>>>> would be ambiguous, as various
combinations of >, >>, and >>> tokens could represent the >>>> characters.

An input character } that could be reduced to either a separator token (3.12 ⇗) or part of a
fragment token is reduced according to context, as specified in 3.13.

Consider two tokens x and y in the resulting input stream. If x precedes y, then we say that x is
to the left of y and that y is to the right of x.

For example, in this simple piece of code:

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.12
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.9
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.9
https://docs.oracle.com/javase/specs/jls/se19/html/jls-4.html#jls-4.11
https://docs.oracle.com/javase/specs/jls/se19/html/jls-4.html#jls-4.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.12

22/02/2023, 15:37String Templates (Preview)

Page 5 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

class Empty {
}

we say that the } token is to the right of the { token, even though it appears, in this two-dimensional
representation, downward and to the left of the { token. This convention about the use of the words
left and right allows us to speak, for example, of the right-hand operand of a binary operator or of the
left-hand side of an assignment.

3.13 Fragments

A template (15.8.6) resembles either a string literal or a text block but contains one or more
embedded expressions, which are expressions prefixed by the character sequence \{ and
postfixed by the character }.

A fragment consists of a non-expression part of a template.

Fragment:
StringTemplateBegin
StringTemplateMid
StringTemplateEnd
TextBlockTemplateBegin
TextBlockTemplateMid
TextBlockTemplateEnd

StringTemplateBegin:
" StringFragment \{

StringTemplateMid:
} StringFragment \{

StringTemplateEnd:
} StringFragment "

StringFragment:
{ StringCharacter }

TextBlockTemplateBegin:
""" { TextBlockWhiteSpace } LineTerminator TextBlockFragment \{

TextBlockTemplateMid:
} TextBlockFragment \{

TextBlockTemplateEnd:
} TextBlockFragment """

TextBlockFragment:
{ TextBlockCharacter }

The following productions from 3.10.5 ⇗ and 3.10.6 ⇗ are shown here for convenience:

StringCharacter:
InputCharacter but not " or \
EscapeSequence

TextBlockWhiteSpace:
WhiteSpace but not LineTerminator

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6

22/02/2023, 15:37String Templates (Preview)

Page 6 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return"
the ASCII CR character followed by the ASCII LF character

TextBlockCharacter:
InputCharacter but not \
EscapeSequence
LineTerminator

The content of a fragment is defined as follows:

The content of a StringTemplateBegin is the sequence of characters that begins
immediately after the opening " and ends immediately before the first occurrence of the
sequence \{. (As the sequence \{ is not a valid escape sequence, it will prefix the first
embedded expression.)
The content of a StringTemplateMid is the sequence of characters that begins immediately
after the character } and ends immediately before the next occurrence of the sequence \{.
The content of a StringTemplateEnd is the sequence of characters that begins immediately
after the character } and ends immediately before the closing ".
The content of a TextBlockTemplateBegin is the sequence of characters that begins
immediately after the opening delimiter (3.10.6 ⇗) and ends immediately before the first
occurrence of the sequence \{. (As the sequence \{ is not a valid escape sequence, it will
prefix the first embedded expression.)
The content of a TextBlockTemplateMid is the sequence of characters that begins
immediately after the character } and ends immediately before the next occurrence of the
sequence \{.
The content of a TextBlockTemplateEnd is the sequence of characters that begins
immediately after the character } and ends immediately before the closing delimiter
(3.10.6 ⇗).

It is a compile-time error for a line terminator (3.4 ⇗) to appear in the content of a
StringTemplateBegin, StringTemplateMid, or StringTemplateEnd token.

The content of a TextBlockTemplateBegin, TextBlockTemplateMid, or TextBlockTemplateEnd
token is further transformed by applying the following step:

Line terminators are normalized to the ASCII LF character, as follows:

An ASCII CR character followed by an ASCII LF character is translated to an ASCII LF
character.

An ASCII CR character is translated to an ASCII LF character.

The string represented by a StringTemplateBegin, StringTemplateMid, or StringTemplateEnd
token is given by its content with every escape sequence interpreted, as if by execution of
String.translateEscapes on the content.

The string represented by a TextBlockTemplateBegin, TextBlockTemplateMid, or
TextBlockTemplateEnd token can be determined only in the context of the entire text block
template (15.8.6).

Whilst templates resemble string literals (and text blocks), they are not ambiguous, in the sense
that it is not possible for a sequence of input characters to form both a syntactically correct string
literal and a syntactically correct template. This is because a template must contain at least one

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.4

22/02/2023, 15:37String Templates (Preview)

Page 7 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

embedded expression, but the sequence \{ that prefixes an embedded expression is not a valid
escape sequence in a string literal (or text block).

However, the fragment productions do introduce ambiguities with the other token productions
(3.5). These ambiguities are resolved as follows:

During the reduction of input characters to input elements (3.5), a sequence of input
characters that notionally matches a StringTemplateMid (or StringTemplateEnd) is reduced
to a StringTemplateMid (or StringTemplateEnd) if and only if the reduction of the initial
input character } was not in the context of being recognized as a terminal in a ClassBody,
ConstructorBody, EnumBody, RecordBody, InterfaceBody, ElementValueArrayInitializer,
ArrayInitializer, Block, or SwitchBlock (8.1.7 ⇗, 8.8.7 ⇗, 8.9.1 ⇗, 8.10.2 ⇗, 9.1.5 ⇗, 9.7.1 ⇗,
10.6 ⇗, 14.2 ⇗, 14.11.1 ⇗).

These are all the productions of the syntactic grammar that recognise } as a terminal symbol that
could occur whilst reducing a sequence of tokens to match an (embedded) Expression.

During the reduction of input characters to input elements (3.5), a sequence of input
characters that notionally matches a TextBlockTemplateMid (or TextBlockTemplateEnd) is
reduced to a TextBlockTemplateMid (or TextBlockTemplateEnd) if and only if the reduction
of the initial input character } was not in the context of being recognized as a terminal in a
ClassBody, ConstructorBody, EnumBody, RecordBody, InterfaceBody,
ElementValueArrayInitializer, ArrayInitializer, Block, or SwitchBlock.

For example, consider the sequence of 18 input characters " \ { n e w i n t [] { 4 2 } } ".
The first three input characters are reduced to a StringTemplateBegin. The next twelve input
characters are reduced to the tokens Keyword (new), Keyword (int), Separator ([), Separator (]),
Separator ({), and Literal (42). The next input character in the sequence, }, creates an ambiguity. It
could be reduced to a Separator, or it could be reduced along with the following } and " input
characters to a StringTemplateEnd. As the syntactic grammar would provide the context of the
ArrayInitializer of an array creation expression (15.10.1 ⇗), the rule above ensures that the input
character } is reduced to a Separator. The remaining } and " input characters will then be reduced to a
StringTemplateEnd.

Chapter 7: Packages and Modules

7.3 Compilation Units

CompilationUnit is the goal symbol (2.1) for the syntactic grammar (2.3) of Java programs. It is
defined by the following production:

CompilationUnit:
OrdinaryCompilationUnit
ModularCompilationUnit

OrdinaryCompilationUnit:
[PackageDeclaration] {ImportDeclaration} {TopLevelClassOrInterfaceDeclaration}

ModularCompilationUnit:
{ImportDeclaration} ModuleDeclaration

An ordinary compilation unit consists of three parts, each of which is optional:

A package declaration (7.4 ⇗), giving the fully qualified name (6.7 ⇗) of the package to

https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.1.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.8.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.9.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.10.2
https://docs.oracle.com/javase/specs/jls/se19/html/jls-9.html#jls-9.1.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-9.html#jls-9.7.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-10.html#jls-10.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-14.html#jls-14.2
https://docs.oracle.com/javase/specs/jls/se19/html/jls-14.html#jls-14.11.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.10.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.4
https://docs.oracle.com/javase/specs/jls/se19/html/jls-6.html#jls-6.7

22/02/2023, 15:37String Templates (Preview)

Page 8 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed package
(7.4.2 ⇗).

import declarations (7.5 ⇗) that allow classes and interface from other packages, and
static members of classes and interfaces, to be referred to using their simple names.

Top level declarations of classes and interfaces (7.6 ⇗).

A modular compilation unit consists of a module declaration (7.7 ⇗), optionally preceded by
import declarations. The import declarations allow classes and interfaces from packages in this
module and other modules, as well as static members of classes and interfaces, to be referred
to using their simple names within the module declaration.

Every compilation unit implicitly imports the following:

1. Every public class or interface declared in the predefined package java.lang, as if the
declaration import java.lang.*; appeared at the beginning of each compilation unit
immediately after any package declaration.

2. The static member STR declared in the predefined class
java.lang.template.StringTemplate, as if the declaration import static
java.lang.template.StringTemplate.STR; appeared at the beginning of each
compilation unit immediately after any package declaration.

As a result, the names of all those implicitly imported classes and interfaces classes, interfaces
and static fields are available as simple names in every compilation unit.

The host system determines which compilation units are observable, except for the compilation
units in the predefined package java and its subpackages lang and io, which are all always
observable.

The rest of §7.3 is unchanged.

7.5 Import Declarations

7.5.3 Single-Static-Import Declarations

A single-static-import declaration imports all accessible static members with a given simple
name from a class or interface. This makes these static members available under their simple
name in the module, class, and interface declarations of the compilation unit in which the single-
static-import declaration appears.

SingleStaticImportDeclaration:
import static TypeName . Identifier ;

The TypeName must be the canonical name (6.7 ⇗) of a class or interface.

The class or interface must be either a member of a named package, or a member of a class or
interface whose outermost lexically enclosing class or interface declaration (8.1.3 ⇗) is a member
of a named package, or a compile-time error occurs.

It is a compile-time error if the named class or interface is not accessible (6.6 ⇗).

The Identifier must name at least one static member of the named class or interface. It is a

https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.4.2
https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-6.html#jls-6.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.1.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-6.html#jls-6.6

22/02/2023, 15:37String Templates (Preview)

Page 9 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

compile-time error if there is no static member of that name, or if all of the named members
are not accessible.

It is permissible for one single-static-import declaration to import several fields, classes, or
interfaces with the same name, or several methods with the same name and signature. This
occurs when the named class or interface inherits multiple fields, member classes, member
interfaces, or methods, all with the same name, from its own supertypes.

It is permitted for a single-static-import declaration to redundantly import static members that
are already implicitly imported.

If two single-static-import declarations in the same compilation unit attempt to import classes or
interface with the same simple name, then a compile-time error occurs, unless the two classes or
interfaces are the same, in which case the duplicate declaration is ignored.

If a single-static-import declaration imports a class or interface whose simple name is x, and the
compilation unit also declares a top level class or interface (7.6 ⇗) whose simple name is x, a
compile-time error occurs.

If a compilation unit contains both a single-static-import declaration that imports a class or
interface whose simple name is x, and a single-type-import declaration (7.5.1 ⇗) that imports a
class or interface whose simple name is x, a compile-time error occurs, unless the two classes or
interfaces are the same, in which case the duplicate declaration is ignored.

7.5.4 Static-Import-on-Demand Declarations

A static-import-on-demand declaration allows all accessible static members of a named class or
interface to be imported as needed.

StaticImportOnDemandDeclaration:
import static TypeName . * ;

The TypeName must be the canonical name (6.7 ⇗) of a class or interface.

The class or interface must be either a member of a named package, or a member of a class or
interface whose outermost lexically enclosing class or interface declaration (8.1.3 ⇗) is a member
of a named package, or a compile-time error occurs.

It is a compile-time error if the named class or interface is not accessible (6.6 ⇗).

It is permitted for a static-import-on-demand declaration to redundantly import static members
that are already implicitly imported.

Two or more static-import-on-demand declarations in the same compilation unit may name the
same class or interface; the effect is as if there was exactly one such declaration.

The rest of §7.5.4 is unchanged.

Chapter 12: Execution

12.5 Creation of New Class Instances

A new class instance is explicitly created when evaluation of a class instance creation expression
(15.9 ⇗) causes a class to be instantiated.

A new class instance may be implicitly created in the following situations:

https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-7.html#jls-7.5.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-6.html#jls-6.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.1.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-6.html#jls-6.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.9

22/02/2023, 15:37String Templates (Preview)

Page 10 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

Loading of a class or interface that contains a string literal (3.10.5 ⇗) or a text block
(3.10.6 ⇗) may create a new String object to denote the string represented by the string
literal or text block. (This object creation will not occur if an instance of String denoting
the same sequence of Unicode code points as the string represented by the string literal or
text block has previously been interned.)

Execution of an operation that causes boxing conversion (5.1.7 ⇗). Boxing conversion may
create a new object of a wrapper class (Boolean, Byte, Short, Character, Integer, Long,
Float, Double) associated with one of the primitive types.

Execution of a string concatenation operator + (15.18.1 ⇗) that is not part of a constant
expression (15.29 ⇗) always creates a new String object to represent the result. String
concatenation operators may also create temporary wrapper objects for a value of a
primitive type.

Evaluation of a method reference expression (15.13.3 ⇗) or a lambda expression
(15.27.4 ⇗) may require that a new instance be created of a class that implements a
functional interface type (9.8 ⇗).

Evaluation of a template expression (15.8.6) may require that a new instance be created of
a class that implements the functional interface type
java.lang.template.StringTemplate.

Each of these situations identifies a particular constructor (8.8 ⇗) to be called with specified
arguments (possibly none) as part of the class instance creation process.

Whenever a new class instance is created, memory space is allocated for it with room for all the
instance variables declared in the class and all the instance variables declared in each superclass
of the class, including all the instance variables that may be hidden (8.3 ⇗).

If there is not sufficient space available to allocate memory for the object, then creation of the
class instance completes abruptly with an OutOfMemoryError. Otherwise, all the instance
variables in the new object, including those declared in superclasses, are initialized to their
default values (4.12.5 ⇗).

Just before a reference to the newly created object is returned as the result, the indicated
constructor is processed to initialize the new object using the following procedure:

1. Assign the arguments for the constructor to newly created parameter variables for this
constructor invocation.

2. If this constructor begins with an explicit constructor invocation (8.8.7.1 ⇗) of another
constructor in the same class (using this), then evaluate the arguments and process that
constructor invocation recursively using these same five steps. If that constructor
invocation completes abruptly, then this procedure completes abruptly for the same reason;
otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of another
constructor in the same class (using this). If this constructor is for a class other than
Object, then this constructor will begin with an explicit or implicit invocation of a superclass
constructor (using super). Evaluate the arguments and process that superclass constructor
invocation recursively using these same five steps. If that constructor invocation completes
abruptly, then this procedure completes abruptly for the same reason. Otherwise, continue
with step 4.

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-5.html#jls-5.1.7
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.18.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.29
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.13.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.27.4
https://docs.oracle.com/javase/specs/jls/se19/html/jls-9.html#jls-9.8
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.8
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-4.html#jls-4.12.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-8.html#jls-8.8.7.1

22/02/2023, 15:37String Templates (Preview)

Page 11 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

4. Execute the instance initializers and instance variable initializers for this class, assigning the
values of instance variable initializers to the corresponding instance variables, in the left-to-
right order in which they appear textually in the source code for the class. If execution of
any of these initializers results in an exception, then no further initializers are processed
and this procedure completes abruptly with that same exception. Otherwise, continue with
step 5.

5. Execute the rest of the body of this constructor. If that execution completes abruptly, then
this procedure completes abruptly for the same reason. Otherwise, this procedure
completes normally.

Unlike C++, the Java programming language does not specify altered rules for method dispatch
during the creation of a new class instance. If methods are invoked that are overridden in
subclasses in the object being initialized, then these overriding methods are used, even before
the new object is completely initialized.

Example 12.5-1. Evaluation of Instance Creation

class Point {
 int x, y;
 Point() { x = 1; y = 1; }
}
class ColoredPoint extends Point {
 int color = 0xFF00FF;
}
class Test {
 public static void main(String[] args) {
 ColoredPoint cp = new ColoredPoint();
 System.out.println(cp.color);
 }
}

Here, a new instance of ColoredPoint is created. First, space is allocated for the new
ColoredPoint, to hold the fields x, y, and color. All these fields are then initialized to their default
values (in this case, 0 for each field). Next, the ColoredPoint constructor with no arguments is first
invoked. Since ColoredPoint declares no constructors, a default constructor of the following form is
implicitly declared:

ColoredPoint() { super(); }

This constructor then invokes the Point constructor with no arguments. The Point constructor does
not begin with an invocation of a constructor, so the Java compiler provides an implicit invocation of
its superclass constructor of no arguments, as though it had been written:

Point() { super(); x = 1; y = 1; }

Therefore, the constructor for Object which takes no arguments is invoked.

The class Object has no superclass, so the recursion terminates here. Next, any instance initializers
and instance variable initializers of Object are invoked. Next, the body of the constructor of Object
that takes no arguments is executed. No such constructor is declared in Object, so the Java
compiler supplies a default one, which in this special case is:

Object() { }

This constructor executes without effect and returns.

Next, all initializers for the instance variables of class Point are executed. As it happens, the
declarations of x and y do not provide any initialization expressions, so no action is required for this

22/02/2023, 15:37String Templates (Preview)

Page 12 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

step of the example. Then the body of the Point constructor is executed, setting x to 1 and y to 1.

Next, the initializers for the instance variables of class ColoredPoint are executed. This step assigns
the value 0xFF00FF to color. Finally, the rest of the body of the ColoredPoint constructor is
executed (the part after the invocation of super); there happen to be no statements in the rest of
the body, so no further action is required and initialization is complete.

Example 12.5-2. Dynamic Dispatch During Instance Creation

class Super {
 Super() { printThree(); }
 void printThree() { System.out.println("three"); }
}
class Test extends Super {
 int three = (int)Math.PI; // That is, 3
 void printThree() { System.out.println(three); }

 public static void main(String[] args) {
 Test t = new Test();
 t.printThree();
 }
}

This program produces the output:

0
3

This shows that the invocation of printThree in the constructor for class Super does not invoke the
definition of printThree in class Super, but rather invokes the overriding definition of printThree in
class Test. This method therefore runs before the field initializers of Test have been executed, which
is why the first value output is 0, the default value to which the field three of Test is initialized. The
later invocation of printThree in method main invokes the same definition of printThree, but by
that point the initializer for instance variable three has been executed, and so the value 3 is printed.

Chapter 15: Expressions

15.8 Primary Expressions

Primary expressions include most of the simplest kinds of expressions, from which all others are
constructed: literals, object creations, field accesses, method invocations, method references, and
array accesses, and template expressions. A parenthesized expression is also treated syntactically
as a primary expression.

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
ClassLiteral
this

TypeName . this
(Expression)
ClassInstanceCreationExpression

22/02/2023, 15:37String Templates (Preview)

Page 13 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

FieldAccess
ArrayAccess
MethodInvocation
MethodReference
TemplateExpression

This part of the grammar of the Java programming language is unusual, in two ways. First, one might
expect simple names, such as names of local variables and method parameters, to be primary
expressions. For technical reasons, names are grouped together with primary expressions a little later
when postfix expressions are introduced (15.14 ⇗).

The technical reasons have to do with allowing left-to-right parsing of Java programs with only one-
token lookahead. Consider the expressions (z[3]) and (z[]). The first is a parenthesized array access
(15.10.3 ⇗) and the second is the start of a cast (15.16 ⇗). At the point that the look-ahead symbol is
[, a left-to-right parse will have reduced the z to the nonterminal Name. In the context of a cast we
prefer not to have to reduce the name to a Primary, but if Name were one of the alternatives for
Primary, then we could not tell whether to do the reduction (that is, we could not determine whether
the current situation would turn out to be a parenthesized array access or a cast) without looking
ahead two tokens, to the token following the [. The grammar presented here avoids the problem by
keeping Name and Primary separate and allowing either in certain other syntax rules (those for
ClassInstanceCreationExpression, MethodInvocation, ArrayAccess, and PostfixExpression, though not
FieldAccess because it uses an identifier directly). This strategy effectively defers the question of
whether a Name should be treated as a Primary until more context can be examined.

The second unusual feature avoids a potential grammatical ambiguity in the expression "new int[3]
[3]" which in Java always means a single creation of a multidimensional array, but which, without
appropriate grammatical finesse, might also be interpreted as meaning the same as "(new int[3])
[3]".

This ambiguity is eliminated by splitting the expected definition of Primary into Primary and
PrimaryNoNewArray. (This may be compared to the splitting of Statement into Statement and
StatementNoShortIf (14.5 ⇗) to avoid the "dangling else" problem.)

15.8.1 Lexical Literals

A literal (3.10 ⇗) denotes a fixed, unchanging value.

The following production from 3.10 ⇗ is shown here for convenience:

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
TextBlock
NullLiteral

The type of a literal is determined as follows:

The type of an integer literal (3.10.1 ⇗) that ends with L or l (ell) is long ([4.2.1]).

The type of any other integer literal is int ([4.2.1]).

The type of a floating-point literal ([3.10.2]) that ends with F or f is float ([4.2.3]).

The type of any other floating-point literal is double ([4.2.3]).

The type of a boolean literal ([3.10.3]) is boolean ([4.2.5]).

https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.14
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.10.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-15.html#jls-15.16
https://docs.oracle.com/javase/specs/jls/se19/html/jls-14.html#jls-14.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.1

22/02/2023, 15:37String Templates (Preview)

Page 14 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

The type of a character literal (3.10.4 ⇗) is char ([4.2.1]).

The type of a string literal (3.10.5 ⇗) or a text block (3.10.6 ⇗) is String (4.3.3 ⇗).

The type of the null literal null (3.10.8 ⇗) is the null type (4.1 ⇗); its value is the null
reference.

An integer literal, floating point literal, boolean literal, or character literal evaluates to the value
for which the literal is the source code representation. A string literal or text block evaluates to an
instance of class String, as specified in 3.10.5 ⇗ and 3.10.6 ⇗. The null literal evaluates to the
null reference.

Evaluation of a lexical literal always completes normally.

15.8.6 Template Expressions

Template expressions provide a general means of combining literal text with the values of
expressions. A template is a specification of n+1 (n>0) strings and n expressions, whose values
are to be combined by a template processor. The value of the implicitly imported static field STR
(7.3) is a template processor that performs simple string interpolation. Other template processors
can perform arbitrary computations to combine the strings corresponding to the literal text with
the values of the expressions to produce a result of any desired type.

Each template expression specifies both a template processor and a template argument. A
template argument can be either a template, or, as special cases, a string literal or a text block.

TemplateExpression:
TemplateProcessor . TemplateArgument

TemplateProcessor:
Expression

TemplateArgument:
Template
StringLiteral
TextBlock

Template:
StringTemplate
TextBlockTemplate

StringTemplate:
StringTemplateBegin EmbeddedExpression
  { StringTemplateMid EmbeddedExpression } StringTemplateEnd

TextBlockTemplate:
TextBlockTemplateBegin EmbeddedExpression
  { TextBlockTemplateMid EmbeddedExpression } TextBlockTemplateEnd

EmbeddedExpression:
[Expression]

The following productions from 3.13 are shown here for convenience:

StringTemplateBegin:
" StringFragment \{

StringTemplateMid:

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.4
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se19/html/jls-4.html#jls-4.3.3
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.8
https://docs.oracle.com/javase/specs/jls/se19/html/jls-4.html#jls-4.1
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.6

22/02/2023, 15:37String Templates (Preview)

Page 15 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

} StringFragment \{

StringTemplateEnd:
} StringFragment \{

StringFragment:
{ StringCharacter }

TextBlockTemplateBegin:
""" TextBlockFragment \{

TextBlockTemplateMid:
} TextBlockFragment \{

TextBlockTemplateEnd:
} TextBlockFragment \{

TextBlockFragment:
{ TextBlockCharacter }

A template resembles either a string literal or a text block but contains one or more embedded
expressions, which are expressions prefixed by the character sequence \{ and postfixed by the
character }. If nothing appears between the character sequences \{ and }, the embedded
expression is implicitly taken to be the null literal (3.10.8 ⇗).

A StringTemplate with n (n > 0) embedded expressions, consists of the alternate interleaving of
n+1 fragments (one StringTemplateBegin token, n-1 StringTemplateMid tokens, and one
StringTemplateEnd token (3.13)) with the n embedded expressions.

For example, the simple string template "\{42} is the answer." consists of a StringTemplateBegin
token ("\{), followed by the expression 42 (an integer literal), followed by the StringTemplateEnd
token (} is the answer."). The string template "The answer is \{x+y}!" consists of a
StringTemplateBegin token ("The answer is \{), followed by the expression x+y, followed by a
StringTemplateEnd token (}!"). The string template "Hello \{name} from \{address.city},"
consists of a StringTemplateBegin token ("Hello \{), followed by the expression name, followed by a
StringTemplateMid token (} from \{), followed by the expression address.city, followed by a
StringTemplateEnd token (},"). Finally, the string template "Customer name: \{}" consists of a
StringTemplateBegin token ("Customer name: \{), followed by the (implicit) expression null,
followed by a StringTemplateEnd token (}").

From the fragments in a string template, a sequence of corresponding fragment strings is derived
by taking the content of each fragment token (3.13).

For example, the fragment strings of the template "\{42} is the answer." are the empty string,
followed by the string " is the answer.". The fragment strings of the template "The answer is \
{x+y}!" are the string "The answer is ", followed by the string "!". The fragment strings of the
template "Hello \{name} from \{address.city}," are the string "Hello ", followed by the string "
from ", followed by the string ",". Finally, the fragment strings of the template "Customer name: \
{}" are the string "Customer name: ", followed by the empty string.

A TextBlockTemplate with n (n > 0) embedded expressions, also consists of the alternate
interleaving of n+1 fragments (one TextBlockTemplateBegin token, n-1 TextBlockTemplateMid
tokens, and one TextBlockTemplateEnd token (3.13)) with the n embedded expressions.
However, the fragment strings are not given directly by the contents of the fragment tokens as
for string templates, but instead they are determined as follows:

1. The string content of a text block template is the sequence of characters given by the
following steps, in order:

https://docs.oracle.com/javase/specs/jls/se19/html/jls-3.html#jls-3.10.8

22/02/2023, 15:37String Templates (Preview)

Page 16 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

i. The content of TextBlockTemplateBegin, followed by the character sequence \{.

ii. For every TextBlockTemplateMid, the sequence of characters that begins with the
character }, followed by the content of TextBlockTemplateMid, followed by the
character sequence \{.

iii. The sequence of characters that begins with the character } and followed by the
content of TextBlockTemplateEnd.

2. The string content of a text block template is then further transformed by applying the
following steps, in order:

i. All incidental white space is removed, as if by execution of String.stripIndent on
the characters of the string content.

ii. Every escape sequence is interpreted, as if by execution of
String.translateEscapes on the characters resulting from step 1.

3. The fragment strings of a text block template with n embedded expressions is the sequence
of strings s1, ..., sn+1 which is derived as follows:

s1 is the string whose content is the sequence of characters starting from the start of
the string content resulting from step 2 and ending immediately before the first
occurrence of the character sequence \{}.
si (2 ≤ i ≤ n) is the string whose content is the sequence of characters that begins
immediately after the (i-1)th occurrence of the character sequence \{} in the string
content resulting from step 2 and ends immediately before the ith occurrence of the
character sequence \{}.
sn+1 is the string whose content is the sequence of characters that begins
immediately after the nth occurrence of the character sequence \{} in the string
content resulting from step 2 and ends immediately before the end of the string
content.

For example, the fragment strings of the text block template

"""
 Name:
 \{customerName}"""

are the string whose content is the six character sequence N a m e : LF (note that the incidental
whitespace has been removed), followed by the empty string.

The type of the TemplateProcessor expression must be a subtype of a type
java.lang.template.ValidatingProcessor<R,E>, for some types R and E; otherwise a compile-
time error occurs. The type of the template expression is then given by the type R.

The package java.lang.template has three interfaces that are used for template processors:

interface ValidatingProcessor<R, E> {...}
interface TemplateProcessor<R>
 extends ValidatingProcessor<R, RuntimeException> { ... }
interface StringProcessor
 extends TemplateProcessor<String> { ...}

Interface ValidatingProcessor is a functional interface (9.8 ⇗) whose method process has a
java.lang.template.StringTemplate formal parameter, a return type R, and a throws clause with
the type E.

https://docs.oracle.com/javase/specs/jls/se19/html/jls-9.html#jls-9.8

22/02/2023, 15:37String Templates (Preview)

Page 17 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

There is no restriction on the type of any embedded expression appearing in a Template.

Example 15.8.6-1. Simple Templates

The following simple examples make use of the static member STR of
java.lang.template.StringTemplate that is implicitly imported in every compilation unit and
implements simple string interpolation.

// A string template with simple embedded string variables
String firstName = "Joan";
String lastName = "Smith";
String fullName = STR."\{firstName} \{lastName}";

// A string template with embedded integer expressions
int x = 10, y = 20;
String s1 = STR."\{x} + \{y} = \{x + y}";

// Embedded expressions can invoke methods and access fields
String s2 = STR."You have a \{getOfferType()} waiting for you!";
String s3 = STR."Access at \{req.date} \{req.time} from \{req.ipAddress}";

// A text block template modeling an HTML element with
// embedded expressions
String title = "My Web Page";
String text = "Hello, world";
String html = STR."""
 <html>
 <head>
 <title>\{title}</title>
 </head>
 <body>
 <p>\{text}</p>
 </body>
 </html>
 """;

// A text block template modeling a JSON value with
// embedded expressions
String name = "Joan Smith";
String phone = "555-123-4567";
String address = "1 Maple Drive, Anytown";
String json = STR."""
 {
 "name": "\{name}",
 "phone": "\{phone}",
 "address": "\{address}"
 };
 """;

At run time, a template expression is evaluated as follows:

1. The TemplateProcessor expression is evaluated. If the resulting value is null, then a
NullPointerException is thrown and the entire template expression completes abruptly
for that reason. If evaluation of the TemplateProcessor completes abruptly, the entire
template expression completes abruptly for the same reason.

2. If the TemplateArgument is a StringLiteral or a TextBlock, then the result of this step is an
instance of java.lang.template.StringTemplate, produced as if by invocation of the

22/02/2023, 15:37String Templates (Preview)

Page 18 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

static method java.lang.template.StringTemplate.of with the argument
TemplateArgument.

If the TemplateArgument is a Template, then the embedded expressions e1, ..., en (n > 0)
are evaluated to yield embedded values, v1, ..., vn. The embedded expressions are
evaluated in the order that they appear in the Template, from left to right. If evaluation of
any embedded expression completes abruptly, then the entire template expression
completes abruptly for the same reason.

Otherwise, the result of this step is a reference to an instance of a class with the following
properties:

The class implements the java.lang.template.StringTemplate interface.

The instance method java.lang.template.StringTemplate.values returns an
instance of java.util.List containing the embedded values v1, ..., vn, in that order.

The instance method java.lang.template.StringTemplate.fragments returns an
instance of java.util.List containing exactly the fragment strings of the template,
in order.

The instance method java.lang.template.StringTemplate.interpolate of the
class instance returns the strict alternate interleaved string concatenation of (1)
exactly the fragment strings of the template, in order, and (2) the embedded values
v1, ..., vn, in that order, beginning with the first fragment string.

3. The result of evaluating the template expression is determined as if by invoking the method
process on the result of step 1, with the argument given by the result of step 2. If this
method invocation completes abruptly, the entire template expression completes abruptly
for the same reason.

Example 15.8.6-2. Simple Template Processors.

The interpolate method of java.lang.StringTemplate provides a convenient way to concatenate
the fragment strings and embedded values of a template to produce a string. In the following
example, UPPER both interpolates a given template and then converts all the letters to uppercase.

StringProcessor UPPER = st -> st.interpolate().toUpperCase();

String name = "Joan";
String result = UPPER."My name is \{name}";

After executing these statements, result will be initialized with the string "MY NAME IS JOAN".

Example 15.8.6-3. More Complex Template Processors.

More complex template processors can use the following simple programming pattern. In the
following example, MY_UPPER_STRINGS first converts the fragment strings (returned by the
fragments method) to uppercase before using the interpolate method (using the embedded values
returned by the values method) to return a string result.

StringProcessor MY_UPPER_STRINGS = st -> {
 List<String> fragments = st.fragments()
 .stream()
 .map(String::toUpperCase)
 .toList();
 List<Object> values = st.values();
 return StringTemplate.interpolate(fragments, values);

22/02/2023, 15:37String Templates (Preview)

Page 19 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

};

String name = "Joan";
String result = MY_UPPER_STRINGS."My name is \{name}";

After executing these statements, result will be initialized with the string "MY NAME IS Joan"`.

In the following example, MY_UPPER_VALUES converts the embedded expressions to upper case
strings (taking care to handle any null values) before interpolating.

StringProcessor MY_UPPER_VALUES = st -> {
 List<String> values = st.values()
 .stream()
 .map((o) -> (o==null)?"":o.toString().toUpperCase())
 .toList();
 return StringTemplate.interpolate(st.fragments(), values);
};

String title = null;
String firstName = "Joan";
String familyName = "Smith";
String result = MY_UPPER_VALUES."Welcome \{title}\{firstName} \{familyName}";

After executing these statements, result will be initialized with the string "Welcome JOAN SMITH".

Example 15.8.6-4. Template Processors That Do Not Return Strings

It is possible to process a template and return a value other than a string; the interface
TemplateProcessor can be used for this purpose. In the following example, JSON returns an
instance of a class JSONObject and not a string.

TemplateProcessor<JSONObject> JSON =
 (StringTemplate st) -> new JSONObject(st.interpolate());

String name = "Joan Smith";
String phone = "555-123-4567";
String address = "1 Maple Drive, Anytown";

JSONObject doc = JSON."""
 {
 "name": "\{name}",
 "phone": "\{phone}",
 "address": "\{address}"
 }
 """;

Example 15.8.6-6. Template Processors That Can Throw an Exception

It is sometimes useful to validate a given template and throw an exception if the template does not
meet the requirements. The interface ValidatingProcessor can be used for this purpose.

In the following example, JSON_VALIDATE converts a given template into an instance of a class
JSONObject, but first checks that the intermediate interpolated string begins and ends with matching
braces (ignoring any leading or trailing white space). If either of these checks fail then a
JSONException is thrown, otherwise the corresponding JSONObject instance is returned.

ValidatingProcessor<JSONObject, JSONException> JSON_VALIDATE = (StringTemplate
st) -> {
 String stripped = st.interpolate().strip();
 if (!stripped.startsWith("{") || !stripped.endsWith("}")) {

22/02/2023, 15:37String Templates (Preview)

Page 20 of 20file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/specs/string-templates-jls.html

 throws new JSONException("Missing brace");
 }
 return new JSONObject(stripped);
};

String name = "Joan Smith";
String phone = "555-123-4567";
String address = "1 Maple Drive, Anytown";
try {
 JSONObject doc = JSON_VALIDATE."""
 {
 "name": "\{name}",
 "phone": "\{phone}",
 "address": "\{address}"
 }
 """;
} catch (JSONException ex) {
 ...
}

Copyright © 1993, 2023, Oracle and/or its affiliates, 500 Oracle Parkway, Redwood Shores, CA 94065 USA.
All rights reserved. Use is subject to license terms and the documentation redistribution policy.
DRAFT 20-internal-adhoc.gbierman.20230222

file:///Users/gmb/JavaSpecs/closed-jdk/jep430-20230222/legal/copyright.html
https://www.oracle.com/java/javase/terms/license/java20speclicense.html
https://www.oracle.com/technetwork/java/redist-137594.html

