
18/04/2024, 15:22Module Import Declarations (Preview)

Page 1 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

Java SE 23 & JDK 23
DRAFT 23-internal-adhoc.gbierman.20240326

API OTHER SPECIFICATIONS TOOL GUIDES

This specification is not final and is subject to change. Use is subject to license terms.

Module Import Declarations (Preview)
Changes to the Java® Language Specification • Version 23-internal-
adhoc.gbierman.20240326

Chapter 6: Names
6.1 Declarations
6.3 Scope of a Declaration
6.4 Shadowing and Obscuring

6.4.1 Shadowing
6.5 Determining the Meaning of a Name

6.5.1 Syntactic Classification of a Name According to Context

Chapter 7: Packages and Modules
7.5 Import Declarations

7.5.5 Single-Module-Import Declarations

This document describes changes to the Java Language Specification ⇗ to support Module
Import Declarations, which is a preview feature of Java SE 23. See JEP 476 ⇗ for an overview of
the feature.

The preview feature Implicitly declared classes and instance main methods proposed by
draft JEP 8323335 ⇗ depends on this feature.

Changes are described with respect to existing sections of the JLS. New text is indicated like
this and deleted text is indicated like this. Explanation and discussion, as needed, is set aside in
grey boxes.

Changelog:

2023-04: First draft.

Chapter 6: Names

6.1 Declarations

A declaration introduces one of the following entities into a program:

A module, declared in a module declaration (7.7 ⇗)

A package, declared in a package declaration (7.4 ⇗)

An imported class or interface, declared in a single-type-import declaration, or a type-
import-on-demand declaration, or a single-module-import declaration (7.5.1 ⇗, 7.5.2 ⇗,
7.5.5)

An imported static member, declared in a single-static-import declaration or a static-
import-on-demand declaration (7.5.3 ⇗, 7.5.4 ⇗)

file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/api/index.html
file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/index.html
file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/man/index.html
https://www.oracle.com/java/javase/terms/license/java23speclicense.html
https://docs.oracle.com/javase/specs/jls/se22/html
https://openjdk.org/jeps/476
https://openjdk.org/jeps/8323335
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.4

18/04/2024, 15:22Module Import Declarations (Preview)

Page 2 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

A class, declared by a normal class declaration (8.1 ⇗), an enum declaration (8.9 ⇗), or a
record declaration (8.10 ⇗)

An interface, declared by a normal interface declaration (9.1 ⇗) or an annotation interface
declaration (9.6 ⇗).

A type parameter, declared as part of the declaration of a generic class, interface,
method, or constructor (8.1.2 ⇗, 9.1.2 ⇗, 8.4.4 ⇗, 8.8.4 ⇗)

A member of a reference type (8.2 ⇗, 9.2 ⇗, 8.9.3 ⇗, 9.6 ⇗, 10.7 ⇗), one of the following:

A member class (8.5 ⇗, 9.5 ⇗)

A member interface (8.5 ⇗, 9.5 ⇗)

A field, one of the following:

A field declared in a class (8.3 ⇗)

A field declared in an interface (9.3 ⇗)

An implicitly declared field of a class corresponding to an enum constant or a
record component

The field length, which is implicitly a member of every array type (10.7 ⇗)

A method, one of the following:

A method (abstract or otherwise) declared in a class (8.4 ⇗)

A method (abstract or otherwise) declared in an interface (9.4 ⇗)

An implicitly declared accessor method corresponding to a record component

An enum constant (8.9.1 ⇗)

A record component (8.10.3 ⇗)

A formal parameter, one of the following:

A formal parameter of a method of a class or interface (8.4.1 ⇗)

A formal parameter of a constructor of a class (8.8.1 ⇗)

A formal parameter of a lambda expression (15.27.1 ⇗)

An exception parameter of an exception handler declared in a catch clause of a try
statement (14.20 ⇗)

A local variable, one of the following:

A local variable declared by a local variable declaration statement in a block
(14.4.2 ⇗)

A local variable declared by a for statement or a try-with-resources statement
(14.14 ⇗, 14.20.3 ⇗)

A local variable declared by a pattern (14.30.1 ⇗)

A local class or interface (14.3 ⇗), one of the following:

A local class declared by a normal class declaration

A local class declared by an enum declaration

A local class declared by an record declaration

A local interface declared by a normal interface declaration

https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.10
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-9.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.6
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.1.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.6
https://docs.oracle.com/javase/specs/jls/se22/html/jls-10.html#jls-10.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-10.html#jls-10.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.9.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.10.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.27.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.4.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.14
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.30.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.3

18/04/2024, 15:22Module Import Declarations (Preview)

Page 3 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

The rest of the section is unchanged.

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity declared by the
declaration can be referred to using a simple name, provided it is not shadowed (6.4.1).

A declaration is said to be in scope at a particular point in a program if and only if the
declaration's scope includes that point.

The scope of the declaration of an observable top level package (7.4.3 ⇗) is all observable
compilation units associated with modules to which the package is uniquely visible (7.4.3 ⇗).

The declaration of a package that is not observable is never in scope.

The declaration of a subpackage is never in scope.

The package java is always in scope.

The scope of a class or interface imported by a single-type-import declaration (7.5.1 ⇗), or a
type-import-on-demand declaration (7.5.2 ⇗), or a single-module-import declaration (7.5.5) is
the module declaration (7.7 ⇗) and all the class and interface declarations (8.1 ⇗, 9.1 ⇗) of the
compilation unit in which the import declaration appears, as well as any annotations on the
module declaration or package declaration of the compilation unit.

The scope of a member imported by a single-static-import declaration (7.5.3 ⇗) or a static-
import-on-demand declaration (7.5.4 ⇗) is the module declaration and all the class and interface
declarations of the compilation unit in which the import declaration appears, as well as any
annotations on the module declaration or package declaration of the compilation unit.

The scope of a top level class or interface (7.6 ⇗) is all class and interface declarations in the
package in which the top level class or interface is declared.

The scope of a declaration of a member m declared in or inherited by a class or interface C
(8.2 ⇗, 9.2 ⇗) is the entire body of C, including any nested class or interface declarations. If C is
a record class, then the scope of m additionally includes the header of the record declaration of
C.

The scope of a formal parameter of a method (8.4.1 ⇗), constructor (8.8.1 ⇗), or lambda
expression (15.27 ⇗) is the entire body of the method, constructor, or lambda expression.

The scope of a class's type parameter (8.1.2 ⇗) is the type parameter section of the class
declaration, and the type parameter section of any superclass type or superinterface type of the
class declaration, and the class body. If the class is a record class (8.10 ⇗), then the scope of
the type parameter additionally includes the header of the record declaration (8.10.1 ⇗).

The scope of an interface's type parameter (9.1.2 ⇗) is the type parameter section of the
interface declaration, and the type parameter section of any superinterface type of the interface
declaration, and the interface body.

The scope of a method's type parameter (8.4.4 ⇗) is the entire declaration of the method,
including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (8.8.4 ⇗) is the entire declaration of the
constructor, including the type parameter section, but excluding the constructor modifiers.

The scope of a local class or interface declaration immediately enclosed by a block (14.2 ⇗) is
the rest of the immediately enclosing block, including the local class or interface declaration
itself.

https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.4.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.4.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-9.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.6
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.27
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.10
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.10.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.1.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.2

18/04/2024, 15:22Module Import Declarations (Preview)

Page 4 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

The scope of a local class or interface declaration immediately enclosed by a switch block
statement group (14.11 ⇗) is the rest of the immediately enclosing switch block statement
group, including the local class or interface declaration itself.

The scope of a local variable declared in a block by a local variable declaration statement
(14.4.2 ⇗) is the rest of the block, starting with the declaration's own initializer and including
any further declarators to the right in the local variable declaration statement.

The scope of a local variable declared in the ForInit part of a basic for statement (14.14.1 ⇗)
includes all of the following:

Its own initializer

Any further declarators to the right in the ForInit part of the for statement

The Expression and ForUpdate parts of the for statement

The contained Statement

The scope of a local variable declared in the header of an enhanced for statement (14.14.2 ⇗)
is the contained Statement.

The scope of a local variable declared in the resource specification of a try-with-resources
statement (14.20.3 ⇗) is from the declaration rightward over the remainder of the resource
specification and the entire try block associated with the try-with-resources statement.

The translation of a try-with-resources statement implies the rule above.

The scope of a parameter of an exception handler that is declared in a catch clause of a try
statement (14.20 ⇗) is the entire block associated with the catch.

The rest of the section is unchanged.

6.4 Shadowing and Obscuring

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of the same
name, in which case a simple name cannot be used to refer to the declared entity.

Shadowing is distinct from hiding (8.3 ⇗, 8.4.8.2 ⇗, 8.5 ⇗, 9.3 ⇗, 9.5 ⇗), which applies only to
members which would otherwise be inherited but are not because of a declaration in a subclass.
Shadowing is also distinct from obscuring (6.4.2 ⇗).

A declaration d of a type named n shadows the declarations of any other types named n that
are in scope at the point where d occurs throughout the scope of d.

A declaration d of a field or formal parameter named n shadows, throughout the scope of d, the
declarations of any other variables named n that are in scope at the point where d occurs.

A declaration d of a local variable or exception parameter named n shadows, throughout the
scope of d, (a) the declarations of any other fields named n that are in scope at the point where
d occurs, and (b) the declarations of any other variables named n that are in scope at the point
where d occurs but are not declared in the innermost class in which d is declared.

A declaration d of a method named n shadows the declarations of any other methods named n
that are in an enclosing scope at the point where d occurs throughout the scope of d.

A package declaration never shadows any other declaration.

https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.11
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.4.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.14.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.14.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.8.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-6.html#jls-6.4.2

18/04/2024, 15:22Module Import Declarations (Preview)

Page 5 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

A type-import-on-demand declaration never causes any other declaration to be shadowed.

A static-import-on-demand declaration never causes any other declaration to be shadowed.

A single-module-import declaration never causes any other declaration to be shadowed.

A single-type-import declaration d in a compilation unit c of package p that imports a type
named n shadows, throughout c, the declarations of:

any top level type named n declared in another compilation unit of p

any type named n imported by a type-import-on-demand declaration in c

any type named n imported by a static-import-on-demand declaration in c

any type named n imported by a single-module-import declaration in c

A single-static-import declaration d in a compilation unit c of package p that imports a field
named n shadows the declaration of any static field named n imported by a static-import-on-
demand declaration in c, throughout c.

A single-static-import declaration d in a compilation unit c of package p that imports a method
named n with signature s shadows the declaration of any static method named n with signature
s imported by a static-import-on-demand declaration in c, throughout c.

A single-static-import declaration d in a compilation unit c of package p that imports a type
named n shadows, throughout c, the declarations of:

any static type named n imported by a static-import-on-demand declaration in c;

any top level type (7.6 ⇗) named n declared in another compilation unit (7.3 ⇗) of p;

any type named n imported by a type-import-on-demand declaration (7.5.2 ⇗) in c.

any type named n imported by a single-module-import declaration in c.

The rest of the section is unchanged.

6.5 Determining the Meaning of a Name

6.5.1 Syntactic Classification of a Name According to Context

A name is syntactically classified as a ModuleName in these contexts:

In a requires directive in a module declaration (7.7.1 ⇗)

To the right of to in an exports or opens directive in a module declaration (7.7.2 ⇗)

To the right of module in a single-module-import declaration (7.5.5)

A name is syntactically classified as a PackageName in these contexts:

To the right of exports or opens in a module declaration

To the left of the "." in a qualified PackageName

A name is syntactically classified as a TypeName in these contexts:

To name a class or interface:

1. In a uses or provides directive in a module declaration (7.7.1 ⇗)

https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.6
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.7.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.7.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.7.1

18/04/2024, 15:22Module Import Declarations (Preview)

Page 6 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

2. In a single-type-import declaration (7.5.1 ⇗)

3. To the left of the . in a single-static-import declaration (7.5.3 ⇗)

4. To the left of the . in a static-import-on-demand declaration (7.5.4 ⇗)

5. In a permits clause of a sealed class or interface declaration (8.1.6 ⇗, 9.1.4 ⇗).

6. To the left of the (in a constructor declaration (8.8 ⇗)

7. After the @ sign in an annotation (9.7 ⇗)

8. To the left of .class in a class literal (15.8.2 ⇗)

9. To the left of .this in a qualified this expression (15.8.4 ⇗)

10. To the left of .super in a qualified superclass field access expression (15.11.2 ⇗)

11. To the left of .Identifier or .super.Identifier in a qualified method invocation
expression (15.12 ⇗)

12. To the left of .super:: in a method reference expression (15.13 ⇗)

As the Identifier or dotted Identifier sequence that constitutes any ReferenceType
(including a ReferenceType to the left of the brackets in an array type, or to the left of the
< in a parameterized type, or in a non-wildcard type argument of a parameterized type,
or in an extends or super clause of a wildcard type argument of a parameterized type) in
the 17 contexts where types are used (4.11 ⇗):

1. In an extends or implements clause of a class declaration (8.1.4 ⇗, 8.1.5 ⇗)

2. In an extends clause of an interface declaration (9.1.3 ⇗)

3. The return type of a method (8.4.5 ⇗, 9.4 ⇗), including the type of an element of an
annotation interface (9.6.1 ⇗)

4. In the throws clause of a method or constructor (8.4.6 ⇗, 8.8.5 ⇗, 9.4 ⇗)

5. In an extends clause of a type parameter declaration of a generic class, interface,
method, or constructor (8.1.2 ⇗, 9.1.2 ⇗, 8.4.4 ⇗, 8.8.4 ⇗)

6. The type in a field declaration of a class or interface (8.3 ⇗, 9.3 ⇗)

7. The type in a formal parameter declaration of a method, constructor, or lambda
expression (8.4.1 ⇗, 8.8.1 ⇗, 9.4 ⇗, 15.27.1 ⇗)

8. The type of the receiver parameter of a method (8.4 ⇗)

9. The type in a local variable declaration in either a statement (14.4.2 ⇗, 14.14.1 ⇗,
14.14.2 ⇗, 14.20.3 ⇗) or a pattern (14.30.1 ⇗)

10. A type in an exception parameter declaration (14.20 ⇗)

11. The type in a record component declaration of a record class (8.10.1 ⇗)

12. In an explicit type argument list to an explicit constructor invocation statement or
class instance creation expression or method invocation expression (8.8.7.1 ⇗,
15.9 ⇗, 15.12 ⇗)

13. In an unqualified class instance creation expression, either as the class type to be
instantiated (15.9 ⇗) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (15.9.5 ⇗)

14. The element type in an array creation expression (15.10.1 ⇗)

https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1.6
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.1.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.8.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.11.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.12
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.13
https://docs.oracle.com/javase/specs/jls/se22/html/jls-4.html#jls-4.11
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.1.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.6.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.6
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.1.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.1.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.27.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.4.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.14.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.14.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.30.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.10.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.7.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.9
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.12
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.9
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.9.5
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.10.1

18/04/2024, 15:22Module Import Declarations (Preview)

Page 7 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

15. The type in the cast operator of a cast expression (15.16 ⇗)

16. The type that follows the instanceof relational operator (15.20.2 ⇗)

17. In a method reference expression (15.13 ⇗), as the reference type to search for a
member method or as the class type or array type to construct.

The extraction of a TypeName from the identifiers of a ReferenceType in the 17 contexts above is
intended to apply recursively to all sub-terms of the ReferenceType, such as its element type and any
type arguments.

For example, suppose a field declaration uses the type p.q.Foo[]. The brackets of the array type are
ignored, and the term p.q.Foo is extracted as a dotted sequence of Identifiers to the left of the
brackets in an array type, and classified as a TypeName. A later step determines which of p, q, and Foo
is a type name or a package name.

As another example, suppose a cast operator uses the type p.q.Foo<? extends String>. The term
p.q.Foo is again extracted as a dotted sequence of Identifier terms, this time to the left of the < in a
parameterized type, and classified as a TypeName. The term String is extracted as an Identifier in an
extends clause of a wildcard type argument of a parameterized type, and classified as a TypeName.

A name is syntactically classified as an ExpressionName in these contexts:

As the qualifying expression in a qualified superclass constructor invocation (8.8.7.1 ⇗)

As the qualifying expression in a qualified class instance creation expression (15.9 ⇗)

As the array reference expression in an array access expression (15.10.3 ⇗)

As a PostfixExpression (15.14 ⇗)

As the left-hand operand of an assignment operator (15.26 ⇗)

As a VariableAccess in a try-with-resources statement (14.20.3 ⇗)

A name is syntactically classified as a MethodName in this context:

Before the "(" in a method invocation expression (15.12 ⇗)

A name is syntactically classified as a PackageOrTypeName in these contexts:

To the left of the "." in a qualified TypeName

In a type-import-on-demand declaration (7.5.2 ⇗)

A name is syntactically classified as an AmbiguousName in these contexts:

To the left of the "." in a qualified ExpressionName

To the left of the rightmost . that occurs before the "(" in a method invocation expression

To the left of the "." in a qualified AmbiguousName

In the default value clause of an annotation element declaration (9.6.2 ⇗)

To the right of an "=" in an element-value pair (9.7.1 ⇗)

To the left of :: in a method reference expression (15.13 ⇗)

The effect of syntactic classification is to restrict certain kinds of entities to certain parts of expressions:

The name of a field, parameter, or local variable may be used as an expression (15.14.1 ⇗).

The name of a method may appear in an expression only as part of a method invocation

https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.16
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.20.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.13
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.8.7.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.9
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.10.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.14
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.26
https://docs.oracle.com/javase/specs/jls/se22/html/jls-14.html#jls-14.20.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.12
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.6.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-9.html#jls-9.7.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.13
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.14.1

18/04/2024, 15:22Module Import Declarations (Preview)

Page 8 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

expression (15.12 ⇗).

The name of a class or interface may appear in an expression only as part of a class literal
(15.8.2 ⇗), a qualified this expression (15.8.4 ⇗), a class instance creation expression (15.9 ⇗),
an array creation expression (15.10.1 ⇗), a cast expression (15.16 ⇗), an instanceof expression
(15.20.2 ⇗), an enum constant (8.9 ⇗), or as part of a qualified name for a field or method.

The name of a package may appear in an expression only as part of a qualified name for a class
or interface.

Chapter 7: Packages and Modules

7.5 Import Declarations

An import declaration allows a named class, interface, or static member to be referred to by a
simple name (6.2 ⇗) that consists of a single identifier.

Without the use of an appropriate import declaration, a reference to a class or interface
declared in another package, or a reference to a static member of another class or interface,
would typically need to use a fully qualified name (6.7 ⇗).

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration
SingleStaticImportDeclaration
StaticImportOnDemandDeclaration
SingleModuleImportDeclaration

A single-type-import declaration (7.5.1 ⇗) imports a single named class or interface, by
mentioning its canonical name (6.7 ⇗).

A type-import-on-demand declaration (7.5.2 ⇗) imports all the accessible classes and
interfaces of a named package, class, or interface as needed, by mentioning the canonical
name of the package, class, or interface.

A single-static-import declaration (7.5.3 ⇗) imports all accessible static members with a
given name from a class or interface, by giving its canonical name.

A static-import-on-demand declaration (7.5.4 ⇗) imports all accessible static members of
a named class or interface as needed, by mentioning the canonical name of the class or
interface.

A single-module-import declaration (7.5.5) imports all the accessible classes and
interfaces, as needed, from every package exported by a given module.

The scope and shadowing of a class, interface, or member imported by these declarations is
specified in 6.3 and 6.4 ⇗.

An import declaration makes classes, interfaces, or members available by their simple names only
within the compilation unit that actually contains the import declaration. The scope of the class(es),
interface(s), or member(s) introduced by an import declaration specifically does not include other
compilation units in the same package, other import declarations in the current compilation unit, or a
package declaration in the current compilation unit (except for the annotations of a package
declaration).

7.5.5 Single-Module-Import Declarations

A single-module-import declaration allows all the packages exported in a module to be imported

https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.12
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.8.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.8.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.9
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.10.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.16
https://docs.oracle.com/javase/specs/jls/se22/html/jls-15.html#jls-15.20.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/specs/jls/se22/html/jls-6.html#jls-6.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-6.html#jls-6.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.1
https://docs.oracle.com/javase/specs/jls/se22/html/jls-6.html#jls-6.7
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.2
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.5.4
https://docs.oracle.com/javase/specs/jls/se22/html/jls-6.html#jls-6.4

18/04/2024, 15:22Module Import Declarations (Preview)

Page 9 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

as needed.

SingleModuleImportDeclaration:
import module ModuleName ;

A single-module-import declaration import module M; imports, on demand, all the public top
level classes and interfaces in the following packages:

1. The packages exported by the module M to the current module.

2. The packages exported by the modules that are read by the current module due to
reading the module M. This allows a program to use the API of a module, which might
refer to classes and interfaces from other modules, without having to import all those
other modules.

It is a compile-time error if the module ModuleName is not read by the current module (7.3 ⇗).

The modules read by the current module are given by the result of resolution, as described in the
java.lang.module package specification (7.3 ⇗).

Two or more single-module-import declarations in the same compilation unit may name the
same module. All but one of these declarations are considered redundant; the effect is as if that
module was imported only once.

A single-module-import declaration can be used in any source file. It is not required for the source file
to be part of a module. For example, modules java.base and java.sql are part of the standard Java
runtime, so they can be imported by programs which are not themselves developed as modules.

It is sometimes useful to import a module that does not export any packages. This is because the
module may transitively require other modules that do export packages. For example, the java.se
module does not export any packages, but it requires a number of modules transitively, so the effect of
the single-module-import declaration import module java.se; is to import the packages which are
exported by those modules (and so on, recursively).

Example 7.5.5-1. Single-Module-Import

Modules allow a set of packages to be grouped together for reuse under a single name, and the
exported packages of a module are intended to form a cohesive and coherent API. Single-module-
import declarations allow the developer to import all the packages exported by a module in one go,
simplifying the reuse of modular libraries. For example:

import module java.xml;

causes the simple names of the public top level classes and interfaces declared in all packages
exported by module java.xml to be available within the class and interface declarations of the
compilation unit. Thus, the simple name XPath refers to the interface XPath of the package
javax.xml.xpath exported by the module java.xml in all places in the compilation unit where that
class declaration is not shadowed or obscured.

Assume the following compilation unit associated with module M0:

package q;
import module M1; // What does this import?
class C { ... }

where module M0 has the following declaration:

module M0 { requires M1; }

The meaning of the single-module-import declaration import module M1; depends on the exports of

https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.3
https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.3

18/04/2024, 15:22Module Import Declarations (Preview)

Page 10 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

M1 and any modules that M1 requires transitively. Consider as an example:

module M1 {
 exports p1;
 exports p2 to M0;
 exports p3 to M3;
 requires transitive M4;
 requires M5;
}

module M3 { ... }

module M4 { exports p10; }

module M5 { exports p11; }

The effect of the single-module-import declaration import module M1; is then:

1. Import the public top level classes and interfaces from package p1, since M1 exports p1 to
everyone;

2. Import the public top level classes and interfaces from package p2, since M1 exports p2 to M0,
the module with which the compilation unit is associated; and

3. Import the public top level classes and interfaces from package p10, since M1 requires
transitively M4, which exports p10.

Nothing from packages p3 or p11 is imported by the compilation unit.

All simple compilation units implicitly import the module java.base (7.3 ⇗).

Import declarations can also appear in a modular compilation unit. The following modular compilation
unit uses a single-module-import declaration, allowing the simple name of the interface Driver
associated with module java.sql to be used in the provides directive:

import module java.sql;
module com.myDB.core {
 exports ...
 requires transitive java.sql;
 provides Driver with com.myDB.greatDriver;
}

It is possible for a modular compilation unit that declares a module M to also import the module M. In
the following example, this means that the simple name of a class C associated with the module M can
be used in a uses directive:

import module M;
module M {
 ...
 uses C;
 ...
}

Without the single-module-import declaration, the qualified name of the class C would need to be
used in the uses directive.

Suppose a module declaration as follows:

module M2 {
 requires java.se;
 exports p;

https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.3

18/04/2024, 15:22Module Import Declarations (Preview)

Page 11 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

 ...
}

where the package p exported by M2 is declared as follows:

package p;
import module java.xml;
class MyClass {
 ...
}

Even though the module M2 does not directly express a dependency on the module java.xml, the
import of module java.xml is still correct as the resolution process will determine that the module
java.xml is read by module M2.

Single-module-import declarations may appear in a source file containing only a package declaration.
Such files are typically called package-info.java and are used as the sole repository for package-
level annotations and documentation (7.4.1 ⇗).

Example 7.5.5-2. Ambiguous Imports

Clearly importing multiple modules could lead to name ambiguities, for example:

import module java.base;
import module java.desktop;

...
List l = ... // Error - Ambiguous name!
...

The module java.base exports the package java.util, which has a public List interface. The
module java.desktop exports the package java.awt, which a public List class. Having imported
both modules, the use of the simple name List is clearly ambiguous and results in a compile-time
error.

However, just importing a single module can also lead to a name ambiguity, for example:

import module java.desktop;

...
Element e = ... // Error - Ambiguous name!
...

The module java.desktop exports packages, javax.swing.text and
javax.swing.text.html.parser, which have a public Element interface and a public Element
class, respectively. Thus the use of the simple name Element is ambiguous and results in a compile-
time error.

A single-type-import declaration can be used to resolve a name ambiguity. The earlier example where
the simple name List is ambiguous can be resolved as follows:

import module java.base;
import module java.desktop;

import java.util.List; // Resolving the ambiguity of the simple name List

...
List l = ... // Ok - List is resolved to java.util.List
...

Copyright © 1993, 2024, Oracle and/or its affiliates, 500 Oracle Parkway, Redwood Shores, CA 94065 USA.

https://docs.oracle.com/javase/specs/jls/se22/html/jls-7.html#jls-7.4.1
file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/legal/copyright.html

18/04/2024, 15:22Module Import Declarations (Preview)

Page 12 of 12file:///Users/gmb/Oracle/closed-jdk/build/macosx-aarch64-server-release/images/docs/specs/module-import-declarations-jls.html

All rights reserved. Use is subject to license terms and the documentation redistribution policy.
DRAFT 23-internal-adhoc.gbierman.20240326

https://www.oracle.com/java/javase/terms/license/java23speclicense.html
https://www.oracle.com/technetwork/java/redist-137594.html

