Repeating
Annotations
and M ethod

Parameter Reflection

Alex Buckley
Joe Darcy

2012-11-09

Specification: JSR-000901 Java™ Language Specification (" Specification™)
Version: Java SE 8

Status. Draft

Release: November 2012

Copyright © 2012 Oracle America, Inc.
4150 Network Circle, Santa Clara, Cdifornia 95054, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be
protected by one or more U.S. patents, foreign patents, or pending applications. Except as
provided under thefollowing license, no part of the Specification may be reproduced in any
form by any means without the prior written authorization of Oracle USA, Inc. ("Oracle")
and itslicensors, if any. Any use of the Specification and the information described therein
will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with
Paragraphs 1 and 2 below, Oracle hereby grants you a fully-paid, non-exclusive, non-
transferable, limited license (without the right to sublicense) under Oracle's intellectual
property rights to:

1. Review the Specification for the purposes of evaluation. Thisincludes: (i) developing
implementations of the Specification for your internal, non-commercial use; (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of the Specification
in oral or written communications which discuss the Specification provided that such
excerpts do not in the aggregate constitute a significant portion of the Technology.

2. Distribute implementations of the Specification to third parties for their testing and
evaluation use, provided that any such implementation:

(i) does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Javainterfaces, fields or methods within
the Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented;

(i) isclearly and prominently marked with theword "UNTESTED" or "EARLY ACCESS"
or "INCOMPATIBLE" or "UNSTABLE" or "BETA" in any list of available buildsand in
proximity to every link initiating its download, where the list or link is under Licensee's
control; and

(iii) includesthefollowing notice: "Thisisan implementation of an early-draft specification
developed under the Java Community Process (JCP) and is made available for testing and
evaluation purposes only. The code is not compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the
specification is contingent upon your agreement to terminate devel opment and distribution
of your "early draft" implementation as soon as feasible following final completion of the
specification. If you fail to do so, the foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and
distribute to third parties applications written to the Specification.

Other than thislimited license, you acquire noright, title or interest in or to the Specification
or any other Oracle intellectual property, and the Specification may only be used in
accordance with the license terms set forth herein. Thislicense will expire on the earlier of:
(a) two (2) yearsfrom the date of Releaselisted above; (b) thedate onwhichthefinal version
of the Specification is publicly released; or (c) the date on which the Java Specification
Request (JSR) to which the Specification corresponds is withdrawn. In addition, this
license will terminate immediately without notice from Oracle if you fail to comply with
any provision of this license. Upon termination, you must cease use of or destroy the
Specification.

"Licensor Name Space" means the public class or interface declarations whose names
begin with "java', "javax", "com.oracle" or their equivalents in any subsequent naming
convention adopted by Oracle through the Java Community Process, or any recognized
successors or replacements thereof.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Oracle
or Oracle'slicensorsis granted hereunder. Oracle, the Oracle logo, Java are trademarks or
registered trademarks of Oracle USA, Inc. inthe U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS' AND IS EXPERIMENTAL AND
MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL
NOT BE CORRECTED BY ORACLE. ORACLE MAKES NO REPRESENTATIONS
OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF
THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER
RIGHTS. This document does not represent any commitment to release or implement any
portion of the Specif ication in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO
NEW VERSIONS OF THE SPECIFICATION, IF ANY. ORACLE MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any useof such
changesin the Specification will be governed by the then-current license for the applicable
version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ORACLE
OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL,
INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING,
MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF ORACLE AND/

OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

You will hold Oracle (and its licensors) harmless from any claims based on your use of
the Specification for any purposes other than the limited right of evaluation as described
above, and from any claimsthat later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under thislicense.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government'srightsin
the Software and accompanying documentation shall be only as set forth inthislicense; this
isin accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense
(DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

Y ou may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
connection with your evaluation of the Specification ("Feedback™"). To the extent that you
provide Oraclewith any Feedback, you hereby: (i) agreethat such Feedback isprovided ona
non-proprietary and non-confidential basis, and (ii) grant Oracle aperpetual, non-exclusive,
worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple
levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback
for any purpose related to the Specification and future versions, implementations, and test
suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling
U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice
of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or
import regulationsin other countries. Licensee agreesto comply strictly with all such laws
and regulations and acknowledges that it has the responsibility to obtain such licenses to
export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties entire agreement relating to its subject matter. It supersedes
all prior or contemporaneous ora or written communications, proposals, conditions,
representations and warranties and prevails over any conflicting or additional terms of any
quote, order, acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification to this Agreement will
be binding, unlessin writing and signed by an authorized representative of each party.

Table of Contents

1 Repeating Annotations 1

11 TheJava™ Language Specification 2
9.6 Annotation Types 2
9.6.3.6 @eprecated 6
9.6.3.8 @ont ai nedBy 7
9.6.3.9 @oont ai nerFor 7
9.7 Annotations 7
1.2 CoreReflection APl 9
1.3 Language Model APl 16

2 Method Parameter Reflection 19

21 TheJava™ Virtual Machine Specification 20
22 Core Reflection APl 22
23 Language Model APl 23

Vi

Repeating Annotations and Method Parameter Reflection

CHAPTER 1

Repeating Annotations

\JAVA SE 5.0 added annotations to the Java programming language, but allowed
a most one annotation of a given annotation type to be written on a declaration.
In Java SE 8, Oracle proposes to change the Java programming language to alow
multiple annotations of a given annotation type to be written on a declaration:

@oo(1) @oo(2) @gar
class A {}

To respect a pre-existing idiom for representing multiple annotations of a given
annotation type, the Java programming language and Java SE platform API jointly
assume that multiple such annotations are automatically stored in an array-valued
element of a"container annotation™. A little two-way setup is required to associate
a"repeatable” annotation type with its "containing” annotation type:

@Cont ai nedBy(FooCont ai ner. cl ass)
@nterface Foo { int value(); }

@Cont ai ner For (Foo. cl ass)
@nterface FooContainer { Foo[] value(); }

Asaresult of Foo "opting in" to being repeatable, the Java programming language
in Java SE 8 accepts multiple @oo annotations on class A above. At compile-time,
Aisconsidered to beannotated by @ooCont ai ner (val ue = { @oo(1), @oo(2)})

and @Bar .

At runtime, the j ava. | ang. refl ect. Annot at edEl enent object that represents
class A offers reflective operations that automatically "look through"
@ooCont ai ner and expose the two @oo annotations directly.

Together, the meta-annotations @oont ai nedBy and @Cont ai ner For enable
cardinality control for annotation types whose authors desire it. Whereas in Java
SE 5.0 an annotation could appear on adeclaration either zero times or once (given
careful use of @rar get on the annotation's own declaration to limit where it may

11

The Java™ Language Specification REPEATING ANNOTATIONS

appear), in Java SE 8 an annotation may appear zero times, once, or more than
once. Therole of each meta-annotation is:

* @ont ai nedBy constrains the compile-time translation of multiple annotations
into a single array-valued annotation.

* @ont ai ner For supports the Java SE platform reflection API in differentiating
automatically-generated container annotations from legacy annotations which
served as idiomatic containers prior to Java SE 8.

A note on terminology: The Java™ Language Specification speaks of annotations being
present on a declaration, while the Java SE platform APl speaks of annotations being
present on an element (that is, a program element, not an element of an element-value pair
in an annotation).

1.1 TheJava™ Language Specification

9.6 Annotation Types

An annotation type T is repeatable if its declaration is (meta-)annotated with
an @ont ai nedBy annotation whose val ue element indicates the containing
annotation type of T.

An annotation type TC is the containing annotation type of T if all of the following
aretrue:

» The declaration of TC is (meta-)annotated with an @ont ai ner For annotation
whose val ue element indicates T.

* The declaration of T is (meta-)annotated with an @oont ai nedBy annotation
whose val ue element indicates TC.

» TCdeclaresaval ue() method whose return typeis T[] .
» Any methodsdeclared by TCother thanval ue() haveadefault value (JLS9.6.2).

e TCisretained for at least aslong as T, where retention is expressed explicitly or
implicitly with the @ret ent i on annotation (JLS 9.6.3.2). Specifically:

o If theretention of TCisj ava. | ang. annot at i on. Ret ent i onPol i cy. SOURCE,
thentheretention of Tisj ava. | ang. annot at i on. Ret ent i onPol i cy. SOURCE.

o If the retention of TC isj ava. | ang. annot ati on. Ret ent i onPol i cy. CLASS,
then the retention of T is either
java. | ang. annot ati on. Ret enti onPol i cy. CLASS or
j ava. | ang. annot ati on. Ret enti onPol i cy. SOURCE.

REPEATING ANNOTATIONS Annotation Types

o |If theretention of TCisj ava. | ang. annot at i on. Ret ent i onPol i cy. RUNTI ME,
thentheretention of Tisj ava. | ang. annot at i on. Ret ent i onPol i cy. SOURCE,
j ava. |l ang. annot ati on. Ret enti onPol i cy. CLASS, or
java. |l ang. annot ati on. Ret enti onPol i cy. RUNTI ME.

» Tisapplicableto at least the targets where TC is applicable. Specificaly:

o If the declaration of T has a (meta-)annotation m that corresponds to
j ava. |l ang. annot at i on. Tar get, then the declaration of TC must have a
(meta-)annotation my that corresponds to j ava. | ang. annot ati on. Tar get,
and my must have an element whose value indicates a set of program element
types which is the same as, or a subset of, the set of program element types
indicated by the value of the element in m.

For the purpose of this rule, the program element type
j ava. | ang. annot at i on. El ement Type. ANNOTATI ON_TYPE is a subset of the
program element type java.l ang. annot ati on. El ement Type. TYPE Since
annotation types are logically reference types.

Thisruleimplementsthe policy that an annotation type may be repeatable on only some
of the kinds of program element where the annotation typeis applicable.

Assume Foo is a repeatable annotation type and FooCont ai ner is its containing
annotation type. An annotation type "has a target” if the annotation type's declaration
has a (meta-)annotation that correspondsto j ava. | ang. annot at i on. Tar get . Then:

U If Foo has no target and FooCont ai ner has no target, then @oo may appear at any
annotatable location.

U If Foo hasno target but FooCont ai ner hasatarget, then @oo may only be repeated
on program elements where @ooCont ai ner may appear.

U If Foo has atarget, then in the judgment of the designers of the Java programming
language, FooCont ai ner must be declared with knowledge of that target.
Specificaly, FooCont ai ner 'starget must be the same as, or asubset of, Foo'starget.

For example, if Foo'starget isfieldsand methods, then FooCont ai ner may legitimately
restrict its own target to just fields (preventing @oo from being repeated on
methods) or just methods (preventing @oo from being repeated on fields). However,
FooCont ai ner must not restrict its own target to just, say, parameters, because
parameters are not germane to Foo and their mention by FooCont ai ner indicates a
misconception of Foo's purpose. Similarly, FooCont ai ner must not restrict its own
target to fields and parameters, as this is not deemed a | egitimate request to make Foo
repeatable on fields only (the intersection of Foo'starget and FooCont ai ner 'starget).

e If the declaration of T has a (meta)annotation that corresponds

to

j ava. | ang. annot at i on. Docunent ed, then the declaration of TC must have a

(meta-)annotation that correspondstoj ava. | ang. annot at i on. Docunent ed.

9.6

9.6

Annotation Types REPEATING ANNOTATIONS

Notethat it is permissible for TCto be @ocunent ed while T is not @ocunent ed.

e If the declaration of T has a (meta)annotation that corresponds to
j ava. | ang. annot ati on. I nheri t ed, then the declaration of TC must have a
(meta)-annotation that correspondstoj ava. | ang. annot ati on. I nheri t ed.

Notethat it is permissible for TCto be @ nheri t ed while T isnot @ nheri t ed.

It is a compile-time error if an annotation type T is (meta-)annotated with an
@ont ai nedBy annotation whose val ue element indicates a type other than the
containing annotation type of T.

It is a compile-time error if an annotation type TC is (meta-)annotated with an
@ont ai ner For annotation whoseval ue element indicatesthetype T, but TCisnot
the containing annotation type of T.

Consider the following declarations:

@ont ai nedBy(FooCont ai ner . cl ass)
@nterface Foo {}

@Cont ai ner For (Foo. cl ass)
@nterface FooContainer { Object[] value(); }

Compiling the Foo declaration produces a compile-time error because Foo uses
@ont ai nedBy to nominate FooCont ai ner as its containing annotation type, but
FooCont ai ner isnot in fact the containing annotation type of Foo. (The return type of
FooCont ai ner . val ue() isnot Foo[].)

Compiling the FooCont ai ner declaration produces a compile-time error because
FooCont ai ner uses @ont ai ner For to nominateitself asthe containing annotation type
of Foo, but again, FooCont ai ner isnot in fact the containing annotation type of Foo.

Consider the following declarations:

@cont ai nedBy(FooCont ai ner. cl ass)
@nterface Foo {}

@cont ai ner For (Bar. cl ass)
@nterface FooContainer { Foo[] value(); }

@cont ai nedBy(QuuxCont ai ner . cl ass)
@nterface Bar {}

Compiling the Foo declaration produces a compile-time error because Foo uses
@cont ai nedBy to nominate FooCont ai ner as its containing annotation type, but
FooCont ai ner isnotin fact the containing annotation type of Foo. (The @ont ai ner For
(meta-)annotation on FooCont ai ner does not indicate Foo. cl ass.)

REPEATING ANNOTATIONS Annotation Types 9.6

Compiling the FooCont ai ner declaration produces a compile-time error because
FooCont ai ner uses @ont ai ner For to nominateitself asthe containing annotation type
of Bar , but FooCont ai ner isnot in fact the containing annotation type of Bar . (Thereturn
type of FooCont ai ner. val ue() isnot Bar, and the @ont ai nedBy (meta-)annotation
on Bar does not indicate FooCont ai ner . ¢l ass.)

An annotation type can have only one containing annotation type.

This is by design. Any scheme that associates more than one containing annotation
type with a given annotation type declaration causes an undesirable choice at
compile-time, when multiple annotations of a repeatable annotation type are
logically replaced with a "container". Also, if an annotation type declaration was
(meta-)annotated with multiple @ont ai nedBy annotations, then the declaration of
j ava. | ang. annot ati on. Cont ai nedBy would have to be (meta-)annotated with
@ont ai nedBy; such recursion would unduly complicate implementations.

An annotation type can be the containing annotation type of only one annotation
type.

Thisisimplied by the requirement that if the declaration of an annotation type T specifies
a containing annotation type of TC, then the val ue() method of TC has a return type
involving T, specifically T[] .

An annotation type cannot specify itself as its containing annotation type.

Thisisalsoimplied by the requirement ontheval ue() method of the containing annotation
type. Specifically, if an annotation type A specified itself (via @ont ai nedBy) as its
containing annotation type, then the return type of A'sval ue() method would have to be
A[]; but this would cause a compile-time error since an annotation type cannot refer to
itself in its elements (JLS 9.6.1).

More generally, two annotation types cannot specify each other to be their containing
annotation types, because cyclic annotation type declarations areillegal.

For example, the following program causes a compile-time error:

@nterface M {
g] value() default {};
}

@nterface O {
M1 value() default {};
}

a{@ @)
@a{a1 at)

public class Foo {}

with the message:

9.6.3.6 @eprecated REPEATING ANNOTATIONS

Foo.java:2: error: cyclic annotation el enent type
d] value() default {};
N

1 error

An annotation type TC may be the containing annotation type of some annotation
type T while aso having its own containing annotation type TC '. That is, a
contai ning annotation type may itself be a repeatable annotation type.

The following are legal declarations:

/! Foo: Repeatable annotation type
@cont ai nedBy(FooCont ai ner. cl ass)
@nterface Foo { int value(); }

/1 FooContai ner: Containing annotation type of Foo
I and repeatabl e annotation type
@ont ai nedBy(FooCont ai ner Cont ai ner . cl ass)

@cont ai ner For (Foo. cl ass)

@nterface FooContainer { Foo[] value(); }

/'l FooCont ai ner Cont ai ner: Contai ni ng annotati on type of FooCont ai ner
@cont ai ner For (FooCont ai ner . cl ass)
@nt erface FooCont ai ner Contai ner { FooContainer[] value(); }

Thus an annotation of a containing annotation type may be repeated:
@ooCont ai ner ({ @oo(1)}) @ooContainer({@oo(2)}) class A {}

An annotation type which is both repeatable and containing is subject to the rules on
mixing annotations of repeatabl e annotation type with annotations of containing annotation
type (89.7). For example, it is not possible to write multiple @oo annotations alongside
multiple @ooCont ai ner annotations, nor isit possibleto write multiple @ooCont ai ner
annotations alongside multiple @-ooCont ai ner Cont ai ner annotations. However, if the
FooCont ai ner Cont ai ner annotation typewasitself repeatable, then it would be possible
to write multiple @oo annotations alongside multiple @ooCont ai ner Cont ai ner
annotations.

9.6.3.6 @eprecated

A Java compiler must produce a warning when a deprecated type, method, field,
or constructor is used (overridden, invoked, or referenced by name including when
synthesized as a container annotation (89.7)) unless: ...

REPEATING ANNOTATIONS @ont ai nedBy

9.6.3.8 @ront ai nedBy

The annotation typej ava. | ang. annot at i on. Cont ai nedBy isused to indicate the
containing annotation type (89.6) for the annotation type whose declaration is
(meta-)annotated with @ont ai nedBy.

Note that an @ont ai nedBy meta-annotation on the declaration of T, indicating TC, is
not sufficient to make TC the containing annotation type of T. There are numerous well-
formedness rules for TC to be considered the containing annotation type of T.

9.6.3.9 @ront ai ner For

Theannotationtypej ava. | ang. annot at i on. Cont ai ner For isusedtoindicatethe
repeatable annotation type (JLS 9.6) whose own declaration is (meta-)annotated
with an @ont ai nedBy annotation that indicates the annotation type whose
declaration is (meta-)annotated with @ont ai ner For .

9.7 Annotations

Itisacompile-timeerror if adeclaration isannotated with morethan one annotation
of a given annotation type, unless the annotation type is repeatable (89.6), and
the annotated declaration is a valid target (JLS 9.6.3.1) of both the repeatable
annotation type and the repeatabl e annotation type's containing annotation type.

Thisruleimplements the palicy that an annotation may repeat at only some of the locations
where the annotation may appear. See §9.6 for more details.

If and only if adeclaration has multiple annotations of agiven repeatabl e annotation
type T, then those annotations are logically equivalent to a single annotation a
whosetypeisthe containing annotation type of T. a iscalled acontainer annotation.

The elements of the (array-typed) val ue element of the container annotation are al
the annotations of the repeatabl e annotation type, in the left-to-right order in which
they appear on the declaration.

Itisconventional to write multiple annotations of arepeatable annotation type contiguously
on adeclaration, but thisis not required.

Notethe"if and only if" above. If adeclaration only has one annotation of agiven repeatable
annotation type, then container annotations are not relevant.

A container annotation is considered synthesized (compiler-generated but user-visible), not
synthetic (compiler-generated and user-invisible).

9.6.3.8

9.7

Annotations REPEATING ANNOTATIONS

Itisacompile-timeerror if adeclaration isannotated with morethan one annotation
of arepeatable annotation type T and any annotations of the containing annotation
type of T.

One might expect to be able to repeat an annotation in the presence of its own container:
@o00(0) @oo(l) @ooContainer({@oo(2)}) class A {}

However, it is perverse to use a container annotation unnecessarily, and furthermore the
idiom is hard to compile:

e The @oo annotation repeats, so will be wrapped by an @ooCont ai ner annotation.
Then, the @ ooCont ai ner annotation repeats. Either the @rooCont ai ner annotations
are wrapped by an @ooCont ai ner Cont ai ner annotation, or they are stored directly
in the d assFi | e structure. The first option leads to multiple levels of wrapping
and unwrapping, which is undesirable in the judgment of the designers of the Java
programming language. The second option is at odds with the "containerization"
approach which causes the reflection libraries of the Java SE platform to prohibit
duplicate annotations of the same typein ad assFi | e attribute, even though the Java
virtual machine permitsit.

¢ Alternatively, compiling the @oo annotations into the val ue element of the
@ooCont ai ner annotation is undesirable because it changes the semantic content of
the handwritten @ooCont ai ner annotation.

Ultimately, the presence of a container annotation prevents multiple annotations of its own
repeatable annotation type.

It is a compile-time error if a declaration is annotated with any annotations of
a repeatable annotation type T and more than one annotation of the containing
annotation type of T.

Assuming FooCont ai ner is itself a repeatable annotation type with a containing
annotation type of FooCont ai ner Cont ai ner , one might expect the following code to be
legal:

@o0(1) @ooContainer({@oo(2)}) @ooContainer({@o0o(3)}) class A {}

on the grounds that the @ooCont ai ner annotations could be wrapped in a single
@-ooCont ai ner Cont ai ner. However, it is perverse to repeat annotations which are
themsel ves containers when an annotation of their underlying repeatable type is present.

The two rules above obviously combine to prohibit multiple annotations of a repeatable
annotation type and multiple annotations of its containing annotation type:

@o00(0) @o0(l) @ooContainer({@oo0(2)}) @ooContainer({@oo(3)}) class A {}

However, they do allow the following simple case which was legal prior to Java SE 8:

REPEATING ANNOTATIONS Core Reflection API 12

@o00(1l) @ooContainer({@oo(2)}) class A {}

With only one annotation of the repeatable annotation type Foo, no container annotation is
synthesized, evenif FooCont ai ner isthe containing annotation type of Foo. The compiled
form of this code istherefore the samein Java SE 8 asin JavaSE 7.

1.2 Core Reflection API

In Java SE 7, the annotation retrieval methods of
java.l ang. refl ect. Annot at edEl enent are asfollows:

o e e e e e e e e aaaoo s o mm e e e e e eeaaa oo +
| Directly present | Present |
T B T +
| NA | get Annotation(d ass<T>) |
| getDecl aredAnnotations() | getAnnotations() |
T B T +

To expose multiple annotations of a repeatable annotation type on an element in
Java SE 8, Oracle proposes to:

* Add get [Decl ar ed] Annot at i ons(C ass<T>) , the repeating-annotation-aware
version of get Annot at i on(d ass<T>).

* Add get Decl ar edAnnot at i on(d ass<T>) for completeness. The behavior is
that of get Annot at i on(d ass<T>) butignoringinherited annotationson classes.

Here are the annotation retrieval methods of
java.lang. refl ect. Annot at edEl enent in Java SE 8:

o e e e e e e e e e e e e e e e e o +
| Directly present | Present |
o e m e e e e e e e e e e e e e emmeamaa B +
getDecl aredAnnotati on(C ass<T>)	getAnnotation(C ass<T>)
get Decl aredAnnot ati ons(Cl ass<T>)	get Annotations(d ass<T>)
get Decl ar edAnnot ati ons()	getAnnotati ons()
o e e e e e e e e e e e e e e e e o +

Thedeclaration of aclasstype may inherit annotationsfrom its superclass. Assume
T isan annotation type that is applicable to class declarations (via @ar get) and is
inheritable (via @ nheri t ed). The policy in JavaSE 7 is:

* If aclass declaration does not have a"directly present” annotation of type T, the
class declaration may have a"present” annotation of type T due to inheritance.

« If a class declaration does have a "directly present” annotation of type T, the
annotation is deemed to "override" an annotation of type T on the superclass.

1.2

10

Core Reflection API REPEATING ANNOTATIONS

When T is repeatable (89.6), the question is how to extend the policy to handle
multiple annotations of type T on the superclass or subclass. Oracle proposes the
following policy for Java SE 8:

« If aclassdeclaration does not have any "directly present" annotations of typeT,
the class declaration may have "present” annotations of type T dueto inheritance.

« |If aclassdeclaration does have one or more"directly present” annotations of type
T, they are deemed to "override" every annotation of type T on the superclass.

The policy for Java SE 8 isreified in the following definitions of directly present
and present. The phrase "annotations of a program element” is taken to mean
the RuntimeVi si bl eAnnot ati ons OF Runti neVisi bl ePar anet er Annot at i ons
attribute associated with that element.

An annotation A is directly present on an element E if either:
» The annotations of E contain A; or

* The annotations of E contain exactly one annotation C whose type is the
containing annotation type of A's type (89.6) and whose val ue element contains
A.

An annotation A is present on an element E if either:
» Aisdirectly present on E; or

» There are no annotations of A's type which are directly present on E, and Eisa
class, and A'stype isinheritable (JLS 9.6.3.3), and A is present on the superclass
of E.

In addition, Oracle proposes to:

» Refine the specification of get Annotation(d ass<T>) to look through a
container annotation (if present) if the supplied annotation type is repeatable.

* Refine the specifications of get [Decl ar ed] Annot ati ons() to look through
container annotations and return the annotations contained therein.

» Refine the implementations of get [Decl ar ed] Annot ati ons() to return all
annotations of an annotation type on an element, rather than just one, to support
the case where a container annotation is looked through. This behavior is
permitted by the methods' specificationsin JavaSE 7.

* Refine the specification of i sAnnot at i onPresent (X) to be equivalent to:

get Annotation(X) != null

REPEATING ANNOTATIONS Core Reflection API

If the reflection libraries of the Java SE platform load an annotation type T
whichis (meta-)annotated with an @ont ai nedBy annotation whoseval ue element
indicates a type other than the containing annotation type of T, then an exception
of typej ava. | ang. annot at i on. Annot at i onFor mat Er r or iSthrown.

If thereflection libraries of the Java SE platform load an annotation type TC which
is (meta-)annotated with an @ont ai ner For annotation whose val ue element
indicates the type T, but TC is not the containing annotation type of T, then an
exception of typej ava. | ang. annot ati on. Annot at i onFor mat Er r or isthrown.

Throwing these exceptions to indicate an ill-formed relationship between a prospective
repeatable annotation type and its prospective containing annotation type mirrors the
compile-timerulesin §9.6.

1.2

11

1.2

12

Core Reflection API REPEATING ANNOTATIONS

Example 1.2-1. Repeating an annotation is behaviorally compatible

Assume the following declarations, where the Foo annotation type isinheritable:

@o0(1) class A {}
class B extends A {}

SE 7 behavior of SE 7 methods:

A. cl ass. get Annot at i on(Foo. cl ass) = @oo(1)

A. cl ass. get Annot ati on(FooCont ai ner. cl ass) = null

A. cl ass. get Annot ati ons() = [@oo(l)]
A. cl ass. get Decl ar edAnnot ati ons() = [@oo(1l)]
B. cl ass. get Annot ati on(Foo. cl ass) = @oo(1)

B. cl ass. get Annot at i on(FooCont ai ner. cl ass) = nul |

B. cl ass. get Annot ati ons() = [@oo(l)]
B. cl ass. get Decl ar edAnnot at i ons() =11

The behavior of these methods in SE 8 is unchanged.

Now suppose the Foo annotation type is made repeatable with FooCont ai ner as its
containing annotation type. (Per 89.6, FooCont ai ner must be inheritable because Foo is
inheritable.) Assume the declarations are changed to:

@o0(1l) @oo(2) class A {}

class B extends A {}

To support a legacy consumer running on SE 8, we do not expose the synthesized
@-ooCont ai ner viaget [Decl ar ed] Annot ati ons() . Instead, reflection looks through
@-ooCont ai ner on A to return answers at least as good as SE 7.

SE 8 behavior of SE 7 methods:
A. cl ass. get Annot ati on(Foo. cl ass) = @oo(1)
A. cl ass. get Annot ati on(FooCont ai ner. cl ass) = @ooContainer(...)
A. cl ass. get Annot ati ons() = [@oo(l), @oo(2)]
A. cl ass. get Decl ar edAnnot ati ons() = [@oo(l), @oo(2)]

cl ass. get Annot at i on(Foo. cl ass)

cl ass. get Annot at i on(FooCont ai ner. cl ass)
cl ass. get Annot ati ons()

. cl ass. get Decl ar edAnnot at i ons()

@oo(1)
@ooContainer(...)

[@oo(1), @o00(2)]
[]

wmwmwm

SE 8 behavior of SE 8 methods:

/1
/1
/1

/1
/1

NEW
NEW
NEW

NEW
NEW

REPEATING ANNOTATIONS Core Reflection API 12

cl ass. get Decl ar edAnnot at i on(Foo. cl ass)
cl ass. get Decl ar edAnnot at i on(FooCont ai ner. cl ass)

@oo(1)
@ooContainer(...)

> >

A. cl ass. get Annot ati ons(Foo. cl ass) = [@oo(l), @oo(2)]
A. cl ass. get Annot ati ons(FooCont ai ner. cl ass) = [@ooContainer(...)]
A. cl ass. get Decl ar edAnnot at i ons(Foo. cl ass) = [@oo(l), @oo(2)]
A. cl ass. get Decl ar edAnnot at i ons(FooCont ai ner. cl ass) = [@ooContainer(...)]
B. cl ass. get Decl ar edAnnot at i on(Foo. cl ass) = nul |

B. cl ass. get Decl ar edAnnot at i on(FooCont ai ner. cl ass) = null

cl ass. get Annot ati ons(Foo. cl ass)

cl ass. get Annot at i ons(FooCont ai ner. cl ass)

cl ass. get Decl ar edAnnot at i ons(Foo. cl ass)

cl ass. get Decl ar edAnnot at i ons(FooCont ai ner. cl ass)

[@oo(1), @o00(2)]
[@ooContainer(...)]
[]

[1]

W mmm

Now suppose an @oo annotation is placed on the subclass:

@oo(1l) @oo(2) class A {}
@oo(3) class B extends A {}

The behavior of the following SE 7 methods in SE 8 is the same as in SE 7, because in
essence, @oo(3) on B was always deemed to "override" every @oo annotation on A:

SE 8 behavior of SE 7 methods:

B. cl ass. get Annot ati on(Foo. cl ass) = @oo0(3)
B. cl ass. get Annot ati on(FooCont ai ner. cl ass) = null
B. cl ass. get Annot ati ons() = [@o0(3)]
B. cl ass. get Decl ar edAnnot at i ons() = [@oo(3)]
SE 8 behavior of SE 8 methods:
B. cl ass. get Decl ar edAnnot at i on(Foo. cl ass) = @oo0(3)
B. cl ass. get Decl ar edAnnot at i on(FooCont ai ner. cl ass) = null
B. cl ass. get Annot ati ons(Foo. cl ass) = [@oo0(3)]
B. cl ass. get Annot ati ons(FooCont ai ner. cl ass) =11
B. cl ass. get Decl ar edAnnot at i ons(Foo. cl ass) = [@o0(3)]
B. cl ass. get Decl ar edAnnot at i ons(FooCont ai ner.class) = []

13

12 Core Reflection API REPEATING ANNOTATIONS

Example 1.2-2. Idiomatic container continuesto work

Assume a declaration with an @ooCont ai ner annotation written by hand to serve as an
idiomatic container:

@-ooCont ai ner ({ @oo(1), @oo(2)}) class A {}
SE 7 behavior of SE 7 methods:

nul |
@ooContainer(...)
[@ooContainer(...)]

A. cl ass. get Annot at i on(Foo. cl ass)
A. cl ass. get Annot ati on(FooCont ai ner. cl ass)
A. cl ass. get [Decl ar ed] Annot ati ons()

Now suppose the Foo annotation type is made repeatable with FooCont ai ner as its
containing annotation type. This"opt-in" by the author of the annotation typeshasavisible
effect on the behavior of reflection, even without recompiling class A.

SE 8 behavior of SE 7 methods:
A. cl ass. get Annot ati on(Foo. cl ass)

A. cl ass. get Annot ati on(FooCont ai ner . cl ass)
A. cl ass. get [Decl ar ed] Annot ati ons()

@oo(1l) /I NEW
@ooContainer(...)
[@oo(1l), @oo(2)] /I NEW

SE 8 behavior of SE 8 methods:

A. cl ass. get Decl ar edAnnot at i on(Foo. cl ass)

A. cl ass. get Decl ar edAnnot at i on(FooCont ai ner. cl ass)

A. cl ass. get [Decl ar ed] Annot at i ons(Foo. cl ass)

A. cl ass. get [Decl ar ed] Annot at i ons(FooCont ai ner. cl ass)

@oo(1)
@ooContainer(...)

[@oo(1), @o00(2)]

[@ooContainer(...)]

Note that the presence of a container annotation
is visible via get[Decl ared] Annot at i on(FooCont ai ner. cl ass) and
get [Decl ar ed] Annot at i ons(FooCont ai ner. cl ass), but not via the legacy
get [Decl ar ed] Annot ati ons() .

14

REPEATING ANNOTATIONS Core Reflection API 12

Example 1.2-3. Mix of singular and idiomatic container annotations continuesto work

Assume adeclaration with one @ oo annotation and an @ooCont ai ner annotationwritten
by hand to serve as an idiomatic container for @oo annotations:

@00(0) @ooContai ner ({@oo(1), @oo(2)}) class A {}
SE 7 behavior of SE 7 methods:

A. cl ass. get Annot at i on(Foo. cl ass)
A. cl ass. get Annot ati on(FooCont ai ner. cl ass)
A. cl ass. get [Decl ar ed] Annot ati ons()

@o0(0)
@ooContainer(...)
[@o0(0), @ooContainer(...)]

Now suppose the Foo annotation type is made repeatable with FooCont ai ner as its
containing annotation type. This"opt-in" by the author of the annotation typeshasavisible
effect on the behavior of reflection, even without recompiling class A.

SE 8 behavior of SE 7 methods:

A. cl ass. get Annot ati on(Foo. cl ass)

A. cl ass. get Annot ati on(FooCont ai ner . cl ass)
A. cl ass. get Annot ati ons()

A. cl ass. get Decl ar edAnnot ati ons()

@00(0)

@ooContainer(...)

[@o00(0), @oo(l), @oo0(2)] // NEW
[@o0(0), @oo(l), @oo(2)] /I NEW

SE 8 behavior of SE 8 methods:

A. cl ass. get Decl ar edAnnot at i on(Foo. cl ass) @o0(0)

A. cl ass. get Decl ar edAnnot at i on(FooCont ai ner. cl ass) @ooContainer(...)

A. cl ass. get [Decl ar ed] Annot at i ons(Foo. cl ass) = [@oo(0), @oo(l), @oo(2)]
A. cl ass. get [Decl ar ed] Annot at i ons(FooCont ai ner.class) = [@ooContainer(...)]

L et usreturn to adeclaration with one @ oo annotation and an @-ooCont ai ner annotation
written by hand to serve as an idiomatic container for @oo annotations. That is, the Foo
annotation typeis not repeatable - but now assume it isinheritable:

@o00(0) class A {}
@ooCont ai ner ({ @oo(1), @oo(2)}) class B extends A {}

SE 7 behavior of SE 7 methods:

B. cl ass. get Annot ati on(Foo. cl ass)

B. cl ass. get Annot ati on(FooCont ai ner . cl ass)
B. cl ass. get Annot at i ons()

B. cl ass. get Decl ar edAnnot ati ons()

@00(0)

@ooContainer(...)

[@o00(0), @ooContainer(...)]
[@ooContainer(...)]

Now suppose the Foo annotation type is made repeatable with FooCont ai ner as its
containing annotation type. (Per 89.6, FooCont ai ner must be inheritable because Foo is
inheritable.) This "opt-in" by the author of the annotation types has a visible effect on the
behavior of reflection, even without recompiling class A.

15

13 Language Model API REPEATING ANNOTATIONS

SE 8 behavior of SE 7 methods:

@00(0)

@ooContainer(...)

[@oo(1l), @oo(2)] /I NEW
[@oo(1l), @oo0(2)] /I NEW

B. cl ass. get Annot ati on(Foo. cl ass)

B. cl ass. get Annot ati on(FooCont ai ner . cl ass)
B. cl ass. get Annot ati ons()

B. cl ass. get Decl ar edAnnot at i ons()

SE 8 behavior of SE 8 methods:

B. cl ass. get Decl ar edAnnot at i on(Foo. cl ass)
B. cl ass. get Decl ar edAnnot at i on(FooCont ai ner. cl ass)

@oo(1)
@ooContainer(...)

cl ass. get Decl ar edAnnot at i ons(Foo. cl ass)

cl ass. get Decl ar edAnnot at i ons(FooCont ai ner. cl ass
cl ass. get Annot at i ons(Foo. cl ass)

cl ass. get Annot at i ons(FooCont ai ner. cl ass)

[@oo(1), @o0(2)]
[@ooContainer(...)]
[@oo(1), @o00(2)]
[@ooContainer(...)]

W W o m

1.3 Language Model API

In Java SE 7, the annotation retrieval methods of the language model API (defined
by JSR 269) are:

* In javax.lang. nodel . el enent. El enent, get Annotation(d ass<T>) for
retrieving present annotations of a given type, inspired by
java.l ang. refl ect. Annot at edEl enent ;

* In javax.|ang.nodel . el enent. El enent, getAnnotationMrrors() for
retrieving mirrors of directly present annotations;

e In javax. | ang. nodel . util. El enents,
get Al l Annot ati onM rrors(El ement) for retrieving mirrors of present
annotations.

To expose multiple annotations of a repeatable annotation type on an element in
Java SE 8, Oracle proposes to:

* In javax.lang.nodel . el enent. El ement, refine the specification of
get Annot ati on(d ass<T>) for consistency with the same method in
java.l ang. refl ect. Annot at edEl enent . The method will look through a
container annotation (if present) if the supplied annotation type is repeatable.

e In javax. | ang. nodel . el enent . El ement, add get Annot ati ons(C ass<T>)
and get Annot at i ons() for consistency with
java.lang. refl ect. Annot at edEl enent . As described in 81.2,
get Annot at i ons(d ass<T>) will expose a container annotation if the supplied

16

REPEATING ANNOTATIONS Language Model API

annotation typeis acontaining annotation type, but will look through a container
annotation if the supplied annotation type is a repeatable annotation type.
get Annot at i ons() aways looks through container annotations.

* In javax.|ang. nodel . el ement . El enent, refine the implementation of
get AnnotationMrrors() to return mirrors for al annotations which are
directly present on an element. This method offers a literal representation of
source code, so any container annotations whose logical presence isimplied by
§9.7 are not exposed.

* In javax.lang.nodel . util.El enents, refine the implementation of
get Al | AnnotationM rrors(El ement) to return mirrors for al annotations
which are present on an element. This method offers a literal representation of
source code, so any container annotations whose logical presence isimplied by
§9.7 are not exposed.

13

17

13 Language Model API REPEATING ANNOTATIONS

18

CHAPTER2

Method Parameter Reflection

\JAVA programmers traditionally consider the names of formal parameters of
methods and constructors to be debugging symbols. Parameter names are stored
incl ass files only if debugging flags are passed to the compiler (e.g. j avac -g)
and there is no general API to retrieve parameter names from a cl ass file even
if present.

Oraclebelievesthat parameter namesarean integral part of aJavaprogram because
they hold so much valuefor reflective clientslike I DEs and language-interop tools.
The purpose of the Method Parameter Reflection feature in Java SE 8 isto define
first-class cl ass file storage and API retrieval for parameter names and related
metadata.

Oracle believes the ahility to retrieve parameter names at runtime loses much of
itsvalueif parameters are "opted out” of cl ass file storage by default, and instead
have to "opt in" by some syntactic means. Unfortunately, the static and dynamic
footprint of storing parameter nameswill bean unwelcome surprisefor many cl ass
file producers and consumers. Al so, storing parameter names by default meansthat
new information will be exposed about security-sensitive methods, e.g. parameter
names like secret or password. In light of these concerns, Oracle in Java SE 8
will consider parameter names as "opted out" of cl ass file storage by default.

Furthermore, Oracle will not define an "opt in" mechanism in the Java
programming language. Instead, Oracle will seek to ensure that compilers for the
Java programming language can be configured to store parameter namesin cl ass
files(e.g.j avac - g: paraneters). Thenewj ava. | ang. refl ect . Par amet er API
which retrieves parameter names isindifferent to how acl ass file was generated,
so the Java programming language is free to add an "opt in" mechanism after Java
SE 8 without affecting reflective clients.

19

21

20

The Java™ Virtual Machine Specification METHOD PARAMETER REFLECTION

2.1 TheJava™ Virtual Machine Specification

Recall that ad assFi | e of version 51.0 (Java SE 7) stores only:

o Parameter types as seen in the Java programming
language, in a method type signature referenced by
nmet hod_i nfo. attri butes['Signature'].signature_index.

» Parameter types as seen by the Java virtua machine, in a method descriptor
referenced by net hod_i nf 0. descri pt or _i ndex.

(We ignore the storage of parameter names in the Local Vari abl eTabl e attribute
because it is generated only when debugging output is generated by a compiler,
anditisinvisibletothej ava. | ang. refl ect API.)

The storage of parameter names in a d assFi | e of version 52.0 (Java SE 8) is
informed by three points:

1. Parameter namesare not essential to the Javavirtual machine. They play no part
in linkage, so changing a parameter name will never be a binary-incompatible
change.

2. dassFil e producerswill often wish to avoid storing parameter names, and to
strip them from the O assFi | e if present.

3. Additional information about parameters may be stored in future Java SE
releases, such as default values or modifiers other than fi nal .

For these reasons, parameter names and flags seen in the Java programming
language are not stored directly in the venerable met hod_i nf o structure.

Instead, they are stored in a new attribute, Met hodPar anet er s, which may appear
only, and at most once, intheat t ri but es table of amet hod_i nf o structure:

Met hodPar aneters_attribute {
u2 attribute_nane_index;
ud attribute_l ength;
ul parameters_count;
{ u2 paramnet er_nane_i ndex;
ud paraneter_fl ags;
} paraneters[paraneters_count];

The items of the Met hodPar anet ers_at t ri but e structure are as follows:

METHOD PARAMETER REFLECTION The Java™ Virtual Machine Specification

attribute_name_i ndex
The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing the string "Met hodPar anet er s".
attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.
par anmet er s_count

The value of the par anet er s_count item indicates the number of parameter
descriptors in the method descriptor referenced by the descri pt or _i ndex of
the attribute's enclosing net hod_i nf o structure.

Thisis not a constraint which a Java virtual machine implementation must enforce during
format checking (VM S4.9). Thetask of matchingitemsthat "enhance" method parameters
(e.g. with annotations, or names) with the method descriptor's parameters is traditionally
done by the reflection libraries of the Java SE platform.

par anet er s_count is one byte because WVMS 4.3.4 limits a method descriptor to 255
parameters.

paraneters
Each par anet er s array entry contains the following pair of items:

par anet er _nane_i ndex

The value of the par anet er _nane_i ndex item must be avalid index into
the const ant _pool table. The const ant _pool entry at that index must
be a CONSTANT_Ut f 8_i nf o structure representing the name of a method
parameter.

Perhaps a namel ess parameter could be represented with apar anet er _name_i ndex
of zero.
paraneter _fl ags
Thevalue of the par aneter _f1 ags itemisasfollows:
0x0010 (ACC_FI NAL)
Indicates that the method parameter was declared f i nal .
0x1000 (ACC_SYNTHETI C)

Indicates that the method parameter is synthetic; not physicaly or
logically present in source code.

21

21

22

22

Core Reflection API METHOD PARAMETER REFLECTION

0x10000 (ACC_SYNTHESI ZED)

Indicates that the method parameter is synthesized; logically present
but not physically present in source code.

par anet er _f | ags uses the traditional values for ACC_FI NAL and ACC_SYNTHETI C. To
flag a synthesized method parameter, we have a problem because the only unused flag
bit in a u2 is 0x8000. This is aready claimed by the Java Module System spec as
ACC_MODULE inCl assFi | e. access_f I ags, indicating that the O assFi | e representsa
modulerather than aclass. Itisnot feasibleto represent ACC_MODUL E with 0x10000 because
the access flags of _every O assFi | e_ would need to expand from u2 to u4 (we don't
use u3's). It might be possible to represent "module-ness’ by other means (e.g. a marker
attribute), in which case 0x8000 could be used for ACC_SYNTHESI ZED. Certainly it would
beniceif the"synthesized" concept could be encoded in au2, since the concept is expected
to spread beyond method parameters and modul e dependences.

There is no implicit or explicit correspondence between the i'th entry in
parameters and the i'th type in the signature of the enclosing method
(method_info . attributes['Signature'] . signature_index).

There is an implicit correspondence between the i'th entry in paraneters
and the i'th type in the descriptor of the enclosing method (et hod_i nfo
descri pt or _i ndex).

This correspondence, and the associated constraint at reflection-time that
par anet er s_count matches the arity of the descriptor, is for simplicity. While one
could imagine storing information for only a subset of parameters which are typed in
the descriptor, it would unduly complicate the O assFi |l e format given that the vast
majority of compilersarelikely to produce aMet hodPar anet er s attribute denoting every
parameter which is typed in the descriptor (even parameters which are not physically
present in source).

There is an implicit correspondence between the i'th entry in paraneters
and the i'th annotation in the parameter annotations of the enclosing method
(method_info . attributes['RuntineVisibleParaneterAnnotations']
par amet er _annot at i ons).

2.2 Core Réflection API

To expose information about formal parameters of methods and constructors in
Java SE 8, Oracle proposes to:

* Refine the specification of the j ava. | ang. refl ect . Execut abl e class (which
in Java SE 8 is the superclass of java.lang.reflect.Mthod and

METHOD PARAMETER REFLECTION Language Model API

java.lang.reflect. Constructor) by adding a method get Par anet ers()
which returns an array of element typej ava. | ang. ref | ect. Par anet er.

Theclassj ava. | ang. refl ect. Paranet er isasfollows:

package java.lang.reflect;
public final class Paraneter inplenents AnnotatedEl enent {
/1 Cbject methods
publ i ¢ bool ean equal s(hj ect)
public int hashCode()
public String toString()

/1 Ceneral aspects of a method paranmeter (name, imutability, etc)
publ i ¢ Execut abl e get Decl ari ngExecut abl e()

public int get Modi fiers()

public String get Nane()

public Type get Paranet eri zedType()
public Cass<?> getType()

publ i c bool ean i sSynt hesi zed()

publ i c bool ean i sSynthetic()

publ i c bool ean i sVar Args()

/1 Annot at edEl erent et hods
public <T extends Annotation> T getDecl aredAnnot ati on(Cl ass<T>)

public <T extends Annotation> T get Decl aredAnnot ati ons(C ass<T>)
public Annotation[] get Decl ar edAnnot at i ons()

public <T extends Annotati on> T get Annotation(Cl ass<T>)

public <T extends Annotati on> T get Annotati ons(C ass<T>)

public Annotation[] get Annot ati ons()

publ i c bool ean i sAnnot ati onPresent (O ass<? extends Annotati on>)

}

The specification of t oSt ri ng() is:

Returns a string describing this Parameter. The format is the

2.3

nodi fiers for the parameter, if any, in canonical order as recomended

by The Java Language Specification, followed by the fully-qualified
type of the paraneter (excluding the last [] if the parameter is
variable arity), followed by "..." if the paraneter is variable arit
foll owed by a space, followed by the nanme of the paraneter.

2.3 Language Model API

In Java SE 7, a forma parameter of a method or constructor
is represented by javax.|ang. nodel . el enent . Vari abl eEl ement . However,
amost al information about the parameter is obtained via a superinterface,
j avax. | ang. nodel . el enent. El enent .

For j avax. | ang. nodel . el ement . El enent in Java SE 8, Oracle proposes to:

Y,

23

2.3

24

Language Model API METHOD PARAMETER REFLECTION

* Refine the specification of get Si npl eNanme() so that: "If this element represents
amethod or constructor parameter, the name of the parameter is returned.”

» Refine the implementation of get Encl osi ngEl enent () so that, if the element
is a method or constructor parameter, the declaring method or constructor is
returned. This behavior is permitted by the method's specification in Java SE 7.

» Refinetheimplementation of get Modi fi ers() sothat, if theelementisamethod
or constructor parameter, afi nal modifier isreturned if present. This behavior
is permitted by the method's specification in Java SE 7.

Oracle does not propose to modify j avax. | ang. nodel . el enent . El ement (Or
Vari abl eEl enent) to expose whether a method or constructor parameter is
synthesized, synthetic, or variable arity.

	Repeating Annotations and Method Parameter Reflection
	Table of Contents
	1. Repeating Annotations
	1.1. The Java™ Language Specification
	9.6. Annotation Types
	9.6.3.6. @Deprecated
	9.6.3.8. @ContainedBy
	9.6.3.9. @ContainerFor
	9.7. Annotations

	1.2. Core Reflection API
	1.3. Language Model API

	2. Method Parameter Reflection
	2.1. The Java™ Virtual Machine Specification
	2.2. Core Reflection API
	2.3. Language Model API

