
Register Pressure Scheduling in LCM

A PERFORMANCE STUDY OF SPECJVM2008

The addition of a register pressure scheduling algorithm to Local Code Motion (LCM) helps handle cases

where register pressure is significant. The algorithm schedules instructions which lower register

pressure for integer and/or float register classes, tracking register pressure as LCM schedules

instructions. Because this is done before register allocation, the effects of spilling to one or both classes

of register can be reduced or even eliminated. When LCM runs on each basic block, we calculate the

entry register pressure as a starting point and schedule accordingly based on whether we initially have

too much register pressure to start with in one or both register classes. We alternate on the fly in and

out of scheduling for register pressure based on a rolling count of register pressure for each of the

register classes which are utilized as we schedule instructions. When scheduling for register pressure,

we weight the best candidate as the instruction which will alleviate the maximum amount of register

pressure. This makes the choice of register pressure threshold a careful one. If we choose too low, we

throw away latency value in favor of register pressure, if we chose the threshold too high, we still spill

even though we are trying to prevent it. If register pressure initially is below either threshold, we start

scheduling a given basic block as a topological sort, weighing candidates on latency value. This is the

default algorithm when register pressure scheduling is not being utilized.

Register pressure is seen on many common applications today and can be exemplified by running

performance benchmarks like SPECjvm2008. Typically loops which have a modest amount of code and

are unrolled could have register pressure, or even large loops that are never unrolled. Straight line code

which is not encapsulated within loops can also have significant register pressure.

This report addresses the effects of register pressure scheduling by utilizing timing statistics in the C2

compiler in Java JDK version 9 (using –XX:+CITime). We measure both with and without the new

scheduling algorithm enabled so that we can do a side by side comparison. We did not disable tiered

compilation, so there is some randomness in the exact method compilation list for a given metric and

the amount of time collected in C2 accordingly. We wanted natural hotspot detection and elevation to

C2, so leaving tiered compilation on was desirable. We measure the results on a reportable Base run for

SPECjvm2008. We chose to utilize x86 code generation on the 32-bit JDK and compiler suite for our

examples, as there is a fairly rich set of data to mine there. We note that C2 time exceeds 10% on two

metrics and that in general it is well below that as a portion of application runtime. We also see that

scheduling never exceeds 10% of C2, meaning the effects of running the new scheduling algorithm never

exceed more than 1% of runtime for the metrics in our application suite and are generally 0.5% or less.

We also note that 8 of the metrics have uplift of more than 1% performance and as much as 6% with the

new algorithm and that it does not degrade any metric in this suite. The average uplift of those 8

metrics is 3.4%. We expect similar behavior on CPU centric applications which run on both x86 and x64

where register pressure is an issue and subsequently spilling occurs in the generated code. We ran the

metrics multiple times each to establish common behavior, throwing out spikes and keeping the median

scores.

Below we show a table which exemplifies all the points we make here:

register pressure
scheduling=on

total c2
time score

register pressure
scheduling=off

total c2
time score

c2 time
delta

score
delta

metric
sched
uling

register
allocation

schedu
ling

register
allocation

compress 0.245 1.375 3.401 191.8 0.114 1.381 3.282 191.1 3.63% 0.34%

crypto.aes 0.392 2.82 6.988 82.7 0.182 2.65 8.487 78.1 -17.66% 5.84%

crypto.rsa 0.455 2.9 6.17 245.8 0.215 2.943 5.965 232.2 3.44% 5.87%

crypto.signverify 0.465 3.099 6.33 355.5 0.23 2.923 6.014 343.7 5.25% 3.44%

derby 1.48 9.778 19.246 332.6 0.681 9.287 17.864 326.2 7.74% 1.94%

mpegaudio 0.501 2.453 6.14 153.1 0.287 2.714 6.284 152.5 -2.29% 0.39%

scimark.fft.large 0.146 0.864 1.859 81.2 0.073 0.908 1.885 81.3 -1.38% -0.15%

scimark.lu.large 0.114 0.649 3.26 16.9 0.059 0.689 5.33 16.9 -38.84% 0.18%

scimark.sor.large 0.115 0.665 1.45 58.2 0.057 0.709 1.45 58.3 0.00% -0.10%

scimark.sparse.large 0.116 0.692 1.499 41.3 0.054 0.649 1.369 40.0 9.50% 3.35%

scimark.fft.small 0.27 1.74 3.681 471.0 0.139 1.738 3.577 472.7 2.91% -0.37%

scimark.lu.small 0.327 2.052 4.721 619.2 0.156 1.888 4.388 604.0 7.59% 2.50%

scimark.sor.small 0.117 1.02 2.231 262.4 0.093 1.167 2.375 262.1 -6.06% 0.11%

scimark.sparse.small 0.161 0.897 2.427 201.9 0.083 1.011 2.467 197.3 -1.62% 2.32%

scimark.monte_carlo 0.193 1.121 2.49 282.3 0.093 1.02 2.42 280.9 2.89% 0.49%

serial 0.713 5.284 10.079 157.5 0.322 4.885 9.223 156.5 9.28% 0.60%

sunflow 0.535 3.93 8.647 86.9 0.247 3.686 8.062 85.8 7.26% 1.66%

xml.transform 3.72 21.046 46.356 377.7 1.75 21.068 44.839 375.3 3.38% 0.52%

xml.validation 1.489 8.387 19.231 659.0 0.681 8.209 18.058 654.0 6.50% 0.76%

 0.08% 3.4%

Now we can discuss the data. One will notice that there are two corner cases where the change in C2

time is significantly higher without register pressure scheduling, these two cases are prime candidates of

spill code generation. If either metric had such code in a hot path, performance would have significantly

been better with register scheduling on. The first case, the code is warm enough to notice nearly 6% of

performance. We ran each metric separately so that we could see local maxima and minima issues for

cases with and without register pressure scheduling. In all the cases above, scheduling time goes up

with our algorithm enabled, however, we also get much of that back during register allocation on fairly

regular basis. The overall effect of the overhead of our algorithm upon C2 compile time is negligible

because of the averaging effect of spill code mitigation for the metrics we ran. We also expect x64 to

have an average of 5% overhead on C2 because of the existence of the algorithm as there are fewer

cases where register pressure is mitigated. Please also note that scheduling time is always dwarfed by

time in register allocation though so we expect the overhead to always be manageable.

Our machine configuration is as follows:

Skylake Desktop (release candidate), 2.2 GHz, 8.0GB ram, Windows 8.1/x64

