Hidden Classes

JVMS 5.4.4 Access Control

® Ris either pr ot ect ed or has default access ...
® Risprivate and is declared by a class or interface C that belongs to the same nest as D, according to the nestmate test below.

If R is not accessible to D, then access control throws an | | | egal AccessError.

Otherwise, access control succeeds.

A nestis a set of classes and interfaces that allow mutual access to their pri vat e members. One of the classes or interfaces is the nest host. It
enumerates the classes and interfaces which belong to the nest, using the Nest Menber s attribute (84.7.29). Each of them in turn designates it
as the nest host, using the Nest Host attribute (84.7.28). A class or interface which lacks a Nest Host attribute belongs to the nest hosted by
itself; if it also lacks a Nest Menber s attribute, this nest is a singleton consisting only of the class or interface itself. The nest host for a given
class or interface (that is, the nest to which the class or interface belongs) is determined by the Java Virtual Machine as part of access
control, rather than when the class or interface is loaded. Certain methods of the Java SE Platform API may determine the nest host for
a given class or interface prior to access control, in which case access control respects the prior determination.

To determine whether a class or interface C belongs to the same nest as a class or interface D, the nestmate testis applied. C and D belong to
the same nest if and only if the nestmate test succeeds. The nestmate test is as follows:

® |f C and D are the same class or interface, then the nestmate test succeeds.
® Otherwise, the following steps are performed, in order:

1. Let H be the nest host of D, if the nest host of D has previously been determined.
If the nest host of D has not previous

3. Hand H' are compared. If H and H' are the same class or interface, then the nestmate test succeeds. Otherwise, the nestmate

test fails-by-threwingarHtegat-AccessError.

The nest host of a class or interface Mis determined as follows:

® |f Mlacks a Nest Host attribute, then Mis its own nest host.
® Otherwise, Mhas a Nest Host attribute, and its host _cl ass_i ndex item is used as an index into the run-time constant pool of M The

symbolic reference at that index is resolved to a class or interface H (85.4.3.1). Then:

If resolution of this symbolic reference fails, then M is its own nest host. Any exception thrown as a result of failure of
class or interface resolution is not re-thrown by access control.

Otherwise, if resolution succeeds but any of the following is true, then M is its own nest host:
® His not in the same run-time package as M
® H lacks a Nest Menber s attribute.
®* H has a Nest Menber s attribute, but there is no entry in its cl asses array that refers to a class or interface with the name
N, where Nis the name of M

Otherwise, H is the nest host of M

API specification

| **

* Creates a <enphidden</ent class or interface from{@ode bytes},

https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-4.html#jvms-4.7.29
https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-4.html#jvms-4.7.28
https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-5.html#jvms-5.4.3.1

I T T T T I T T I A T T R I . T R R

returning a { @ode Lookup} on the newy created class or interface.

<p> Ordinarily, a class or interface {@ode C} is created by a class |oader, which either
defines {@ode C} directly or delegates to another class |oader.

A class | oader defines {@ode C directly by invoking

{@ink d assLoader#defined ass(String, byte[], int, int, Protecti onDonmai n)

Cl assLoader: : defi neC ass}, which causes the Java Virtual Machine

to derive {@ode C froma purported representation in {@ode class} file format.

In situations where use of a class |oader is undesirable, a class or interface {@ode C} can be
created by this nethod instead. This nethod is capable of defining {@ode C},

and thereby creating it, wthout invoking {@ode C asslLoader::defineC ass}.

Instead, this nethod defines {@ode C as if by arranging for

the Java Virtual Machine to derive a nonarray class or interface { @ode C

froma purported representation in {@ode class} file format

using the follow ng rules:

 The {@i nkpl ai n #l ookupModes() | ookup nodes} for this {@ode Lookup}
nust include {@inkpl ain #hasFul | PrivilegeAccess() full privilege} access.
This level of access is needed to create {@ode C} in the nodul e

of the | ookup class of this {@ode Lookup}.</Ii>

 The purported representation in {@ode bytes} nmust be a { @ode C assFil e}
structure of a supported major and mnor version. The mgjor and mi nor version
may differ fromthe {@ode class} file version of the | ookup class of this
{@ode Lookup}.

 The nane given by {@ode this_class} in the {@ode C assFile} structure
nmust indicate that {@ode C is in the sane package as the | ookup class.

 The nane of {@ode C} is derived fromthe nanme given by {@ode this_class}

as follows. Let {@ode N} be the binary name indicated by {@ode this_class}

(that is, take the internal formgiven by {@ode this_class} and decode it

to a binary nane by replacing ASCI|I forward slashes ({@ode /}) with ASCI| periods ({@ode .}).
The nanme of {@ode C is {@ode N + '/' + <suffix>},

where {@ode <suffix>} is an unqualified nane that is guaranteed to be unique

during this execution of the JVM The nanme of {@ode C} is not a binary name

because it contains an ASCI| forward slash.

 |f {@ode C has a direct superclass, the synbolic reference from{@ode C}
to its direct superclass is resolved using the algorithmof JVMS 5.4.3.1.

Any exceptions that can be thrown due to class or interface resolution

can be thrown by this nmethod. In addition:

 The class or interface named as the direct superclass of {@ode C

must not in fact be an interface.</Ii>

 None of the superclasses of {@ode C may be {@ode C} itself.</Ii>

</ ul >

</[li>

 |f {@ode C has any direct superinterfaces, the synbolic references
from{@ode C to its direct superinterfaces are resolved using the algorithm
of JVMS 5.4.3.1.

Any exceptions that can be thrown due to class or interface resolution

can be thrown by this nethod. In addition:

 Al of the classes and interfaces named as direct superinterfaces of {@ode C
nust in fact be interfaces.

<l'i> None of the superinterfaces of {@ode C nay be {@ode C} itself.
</ ul >

</[li>

 The Java Virtual Machine marks {@ode C} as having the sane defining class |oader,
runtine package, and {@inkplain java.security.ProtectionDonain protection domain}

as the | ookup class of this {@ode Lookup}.

No class loader is recorded as the initiating class |oader for {@ode C.

</ ol >

<p>After {@ode C} has been created, it is |linked by the Java Virtual Machine.
The constant pool entry indicated by its {@ode this_class} itemis resolved.
If the {@ode initialize} paranmeter is {@ode true}, then

{@ode C} is initialized by the Java Virtual Machine.

<p>The newly created class or interface {@ode C} is <enphidden</en®, in the sense that
no other class or interface can refer to {@ode C} via a constant pool entry.

That is, a hidden class or interface cannot be naned as a supertype, a field type,

a nethod paraneter type, or a nethod return type by any other class.

This is because a hidden class or interface does not have a binary name, so

there is no internal formavailable to record in any class's constant pool.

(G ven the {@ode Lookup} object returned this nmethod, its |ookup class

is a {@ode C ass} object for which {@ink C ass#getNane()} returns a string

that is not a binary nane.)

A hidden class or interface is not discoverable by {@ink C ass#forNane(String, boolean, C assLoader)},
{@ink O assLoader#l oadCl ass(String, boolean)}, or {@ink #findCd ass(String)}, and

is not {@inkplain java.lang.instrunent.|nstrunentation#i shMdifiabled ass(d ass)

nmodi fi abl e} by Java agents or tool agents using the

JVM Tool Interface.

<p> |If {@ode options} has the {@ink C assOpti on#NESTMATE NESTMATE} option, then

the newy created class or interface {@ode C is a nenber of a nest. The nest to which

{@ode C} belongs is not based on any {@ode NestHost} attribute in

the {@ode O assFile} structure fromwhich {@ode C was derived. Instead, the follow ng rules
determ ne the nest host of {@ode C}:

f the nest host of the | ookup class of this {@ode Lookup} has previously been determ ned,
then {@ode H} be the nest host of the | ookup class.

Cherwise, it is determned using the algorithmin JVMS 5.4.4, yielding {@ode H.

<l'i >The nest host of {@ode C} is determined to be {@ode H}, the nest host of the |ookup class.
</ ul >

<p> I f {@ode options} has {@ink C assOpti on#VWEAK WEAK} option, then

the newy created class or interface is <enpnot strongly referenced</ens from
its defining class |oader. Therefore, it nay be unloaded while

its defining class |oader is strongly reachable.

<p> A hidden class or interface nay be serializable, but this requires a custom serialization
nechani smin order to ensure that instances are properly serialized

and deserialized. The default serialization nmechani smsupports only

classes and interfaces that are discoverable by their class nane.

@aram bytes the bytes that nake up the class data,

inthe format of a valid {@ode class} file as defined by The JavaTM Virtual Machi ne Specification.
@araminitialize if {@ode true} the class will be initialized.

@aram options {@inkplain CassOption class options}

@eturn the {@ode Lookup} object on the hidden class

T T T O T N R R I R I

*

* @hrows |11 egal AccessException if this {@ode Lookup} does not have

* {@inkplain #hasFul | Privil egeAccess() full privilege} access

* @hrows SecurityException if a security manager is present and it

* r ef uses access</ a>

* @hrows ClassFormatError if {@ode bytes} is not a {@ode C assFile} structure

* @hrows UnsupportedC assVersionError if {@ode bytes} is not of a supported nejor or mnor version

* @hrows |11 egal Argunment Exception if {@ode bytes} denotes a class in a different package than the

| ookup cl ass

* @hrows | nconpatibl eC assChangeError if the class or interface naned as the direct superclass of {@ode
G

* is in fact an interface, or if any of the classes or interfaces nanmed as direct superinterfaces of
{@ode C}

* are not in fact interfaces

* @hrows ClassCircularityError if any of the superclasses or superinterfaces of {@ode C is {@ode C
itself

* @hrows VerifyError if the newy created class cannot be verified

@hrows LinkageError if the newy created class cannot be |inked for any other reason

@hrows Nul | Poi nterException if any paraneter is {@ode null}

@ince 15
@ee O ass#i sH ddend ass()

E N T R

@vns 4.2.1 Binary Cass and Interface Names
@vns 4.2.2 Unqualified Nanmes
@vms 5.4.3.1 Cass and Interface Resol ution
@vns 5.4.4 Access Control
@vms 5.3.5 Deriving a {@ode Class} froma {@ode class} File Representation
@vns 5.4 Linking
* @vnms 5.5 Initialization
*/

publ i c Lookup defineH ddenC ass(byte[] bytes, boolean initialize, CassOption... options)
throws Il egal AccessException

*

Returns the nest host of the nest to which the class

or interface represented by this {@ode C ass} object bel ongs.

Every class and interface is a nmenber of exactly one nest.

Often, a class or interface belongs to a nest consisting only of itself,
in which case this nethod returns {@ode this} to indicate that the class
or interface is the nest host.

<p>If this {@ode O ass} object is an array type or a primtive type or ,
{@ode void}, then this nmethod returns {@ode this} to indicate

that the represented entity bel ongs to the nest consisting only of
itself, and is the nest host.

<p>Ctherwise, if the nest host of this class or interface has previously
been determined, then this nethod returns the nest host of this class

or interface. If the nest host of this class or interface has

not previously been determ ned, then this nmethod returns the nest

host deternmined using the algorithmof JVMS 5.4.4.

@eturn the nest host of this class or interface

@hrows SecurityException

If the returned class is not the current class, and

if a security nanager, <i>s</i>, is present and the caller's
class |l oader is not the same as or an ancestor of the class
| oader for the returned class and invocation of {@ink
SecurityManager #checkPackageAccess s. checkPackageAccess()}
deni es access to the package of the returned class

@ince 11

@vms 4.7.28 The {@ode NestHost} Attribute

@vns 4.7.29 The {@ode NestMenbers} Attribute

@vns 5.4.4 Access Control

o T I T I

-~

@cal | er Sensitive
public C ass<?> get Nest Host ()

	Hidden Classes

